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Machine Learning sucks! (compared to humans and
| | I
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» Supervised learning (SL) requires large numbers of labeled samples.
» Reinforcement learning (RL) requires insane amounts of trials.
» Self-Supervised Learning (SSL) works great but...

» Generative prediction only works for text and other discrete modalities

» Animals and humans:
» Can learn new tasks very quickly.

» Understand how the world works
» Can reason an plan

» Humans and animals have common sense
» There behavior is driven by objectives (drives)
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We Need Human-Level Al for Intelligent Assistarit]hl

» Smart glasses
» Communicates through voice, vision, display,
electro-myogram interfaces (EMG)
» Intelligent Asistant
» Can answer all of our questions

» Helps us in our daily lives

- HHerH
» Knows our preferences and interests (2013)

» For this, we need machines with common sense
» Machines that understand how the world works

» Machines that can remember, reason, plan.




~ Future Al Assistants héed Human-Level Al h |

» Al assistants will require (super-)human-level intelligence
» Like having a staff of smart “people” working for us

» But, we are nowhere near human-level Al today
» Any 17 year-old can learn to drive in 20 hours of training

» Any 10 year-old can learn to clear the dinner table in one shot
» Any house cat can plan complex actions

» What are we missing?
» Learning how to world works (not just from text)

» World models. Common sense
» Memory, Reasoning, Hierarchical Planning



Desiderata for AMI (Advanced Machine Intelligﬂ

» Systems that learn world models from
sensory inputs

» E.g. learn intuitive physics from video

» Systems that have persistent memory
» Large-scale associative memories

» Systems that can plan actions
» So as to fulfill an objective

» Systems that are controllable & safe
» By design, not by fine-tuning.

» Objective-Driven Al Architecture




Self-Supervised Learning
has taken over the world

For understanding and generating text,
iImages, video, 3D models, speech,
proteins,...



- Self-Supervised Learnirp,b via Denoising / Reconh

P Denoising Auto-Encoder [Vincent 2008], BERT [Devlin 2018], ROBERTa [Ott 2019]

Dec(s;)

Learned
representation

Corruption
masking

This is a [...] of text extracted This is a piece of text extracted
[...] alarge set of [...] articles from a large set of news articles



I{No Language Left Bé.”nd (NLLB)

» Language translation between 202 languages
» in any of the 40602 directions

» Training set: 18 billion pairs of sentences for 2440 language directions
» Most pairs have less than 1 million sentences

» https://ai.facebook.com/research/no-language-left-behind/

> A Single neural nEt With Comparison of NLLB-200 with existing SOTA
54 billion parameters : |

» Performance gets better | e

BASELINE 35 56

as more languages are ootat 3.5
added I
» Relies on Self- T
Supervised Learning e
and back-translation. o


https://ai.facebook.com/research/no-language-left-behind/

No Language Left Behind (NLLB)

Acehnese

Acehnese
Mesopotamian Arabic
Ta'izzi- Adeni Arabic
Tunisian Arabic
Afrikaans

South Levantine Arabic
Akan

Amharic

North Levantine Arabic
Modern Standard Arabic
Modern Standard Arabic
Najdi Arabic
Moroccan Arabic
Egyptian Arabic
Assamese

Asturian

Awadhi

Central Aymara

South Azerbaijani
North Azerbaijani
Bashkir

Bambara

Balinese

Belarusian

Bemba

Bengali

Bhojpuri

Banjar

Banjar

Standard Tibetan

Bosnian
Buginese
Bulgarian
Catalan
Cebuano
Czech

Chokwe
Central Kurdish
Crimean Tatar
Welsh

Danish
German

Southwestern Dinka

Dyula
Dzongkha
Greek

English
Esperanto
Estonian
Basque

Ewe

Faroese

Fijian

Finnish

Fon

French

Friulian
Nigerian Fulfulde
Scottish Gaelic

Irish

Galician
Guarani
Gujarati
Haitian Creole
Hausa
Hebrew

Hindi
Chhattisgarhi
Croatian
Hungarian
Armenian
Ighbo

TIlocano
Indonesian
Icelandic
Italian
Javanese
Japanese
Kabyle
Jingpho
Kamba
Kannada
Kashmiri
Kashmiri
Georgian
Central Kanuri
Central Kanuri
Kazakh
Kabiye
Kabuverdianu

Khmer

Kikuyu
Kinyarwanda
Kyrgyz
Kimbundu
Northern Kurdish
Kikongo

Korean

Lao

Ligurian
Limburgish
Lingala
Lithuanian
Lombard
Latgalian
Luxembourgish
Luba-Kasai
Ganda

Luo

Mizo

Standard Latvian
Magahi

Maithili
Malayalam
Marathi
Minangkabau
Minangkabau
Macedonian
Plateau Malagasy
Maltese

Meitei

Halh Mongolian
Mossi

Maori

Burmese

Dutch

Norwegian Nynorsk
Norwegian Bokmal
Nepali

Northern Sotho
Nuer

Nyanja

Occitan

West Central Oromo
Odia

Pangasinan
Eastern Panjabi
Papiamento
Western Persian
Polish

Portuguese

Dari

Southern Pashto
Ayacucho Quechua
Romanian

Rundi

Russian

Sango

Sanskrit

Santali

Sicilian

Shan

Sinhala

Slovak

IL'_

Slovenian
Samoan
Shona
Sindhi
Somali
Southern Sotho
Spanish
Tosk Albanian
Sardinian
Serbian
Swati
Sundanese
Swedish
Swahili
Silesian
Tamil
Tatar
Telugu
Tajik
Tagalog
Thai
Tigrinya
Tamasheq
Tamasheq
Tok Pisin
Tswana
Tsonga

Turkmen
Tumbuka
Turkish

Twi

Central Atlas Tamazight
Uyghur
Ukrainian
Umbundu

Urdu

Northern Uzbek
Venetian
Vietnamese
Waray

Wolof

Xhosa

Eastern Yiddish
Yoruba

Yue Chinese
Chinese
Chinese
Standard Malay
Zulu



SeamlessM4T

» Speech or text input: 100 languages

» Text output: 100 languages

» Speech output: 35 languages

» Seamless Expressive: real-time, preserves voice & expression

>

(1) Pre-trained models

S I M 4T MODEL OUTPUT
SEAMLESSM4T-NLLB W2V_B.ERT =9 e : Vocoder
: T2TT encoder-decoder s e spesch e Speech resynthesis
Speech-to-speech translation pre-training encoder-decoder g y

S25T

MODEL INPUT

Speech-to-text translation u|||\H\IIHmHIJ”lHHH

Speech il
(2) Multitasking UNITY HiFi-GAN

Text-to-speech translation Unit Vocoder

I
Text o7
Conformer Length R T2TT 54T Jr?:zforrzer
> nr ecoder
Text-to-text translation Speech Encoder adaptor T L |
‘ Transformer Transformer

Text Decoder Text-to-Unit Encoder
Automatic speech recognition
Meta Al Transformer
Text Encoder



https://ai.meta.com/blog/seamless-m4t/

f n {0 Y. LeCun
 Deep Learning Connects People to knowledge 8IL

» Meta (FB, Instagram), Google, YouTube, Amazon, are built around
Deep learning

» Take Deep Learning out of them, and they crumble.
» DL helps us deal with the information deluge

» Search, retrieval, ranking, question-answering

» Requires machines to understand content

» Translation / transcription | accessibility
» language -~ language; text ~ speech; image - text

» People speak thousands of different languages
» 3 billion people can’t use technology today.
» 800 million are illiterate, 300 million are visually impaired



- On-Line Content Moderation IL 1

» Filtering out illegal and dangerous content
» \What constitutes acceptable content?

» Meta doesn’t see itself as having the legitimacy to decide
» But in the absence of regulations, it has to do it.

» Types of objectionable content on Facebook
» (with % taken down preemptively & prevalence, Q1 2022)
» Hate Speech (95.6%, 0.02%), Violence incitement (98.1%, 0.03%),
Violence (99.5%, 0.04%), Bullying/Harassment (67%, 0.09%), Child

endangerment (96.4%), Suicide/Self-Injury (98.8%), Nudity (96.7%,
0.04%), Terrorism (16M pieces), Fake accounts (1.5B), Spam (1.8B)

» https://transparency.fb.com/data/community-standards-enforcement
» Al is the solution, not the problem


https://transparency.fb.com/data/community-standards-enforcement

Hate speech suppression/down-ranking on F

» Of the violating content we actioned for hate speech, how much did
we find and action before people reported it?
P https://transparency.fb.com/reports/community-standards-enforcement/hate-speech/facebook/

95.6%

100%

80%
60%
40%
23.6% M

20%

0%

B Found and actioned by us ¢ Reported by users



Protein folding and inverse folding (protein de,s:\

. . ESMfold, ESMfold-2 (FAIR - i
» Protein Folding: 0 old-2 (FAIR)  AlphaFold, AlphaFold-2 (DeepMind)

» from a sequence of amino
acids to 3D structure

» [Jumper 21, Rives 19]

» Protein Generation Generation

» [Lin et al. 2021] [
» Protein Design: ne) : argmin £ (x;2) + R(2)
» from 3D structure to
=equUeEnCes of amino acids ‘ i i L L AR Supenision  UnRefo0sequences
» For drug design LSS
» [Lin & al. BioRxiv:2022.07.20.500902] RS e




ESM Metagenomic Atlas (FAIR+NYU)

» 615 million proteins with
predicted 3D structure

» Interactive website
>

» Paper:
» [Lin et al. 2022] Evolutionary-

scale prediction of atomic level
protein structure with a language

model

MGYP0O01372732937

View Structur

its 533

0.8939

NIN)
nc ts 10

6.381e-35
0.317
AQAZETCM3T

0.931
412
0.893



https://esmatlas.com/
https://www.biorxiv.org/content/10.1101/2022.07.20.500902
https://www.biorxiv.org/content/10.1101/2022.07.20.500902
https://www.biorxiv.org/content/10.1101/2022.07.20.500902
https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm

Generative Al and
Auto-Regressive
Large Language Models



2

{Myj{g-RegressivéE |

g By
ative Architectu.”es i

» Outputs one “token” after another
» Tokens may represent words, image patches, speech segments...

Prompt |  predicted token




- Auto-Regressive Larg.é Language Models (A '.

P Outputs one text token after another
» Tokens may represent words or subwords
» Encoder/predictor is a transformer architecture
» With billions of parameters: typically from 1B to 500B

» Training data: 1 to 2 trillion tokens

» LLMs for dialog/text generation:
» Open: BlenderBot, Galactica, LIaMA, Llama-2, Code Llama (FAIR), Mistral-7B
(Mistral), Falcon (UAE), Alpaca (Stanford), Yi (01.Al)....

» Proprietary: Meta Al (Meta), LaMDA/Bard (Google), Chinchilla (DeepMind),
ChatGPT (OpenAl) ...

» Performance is amazing ... but ... they make stupid mistakes
» Factual errors, logical errors, inconsistency, limited reasoning, toxicity...

» LLMs have limited knowledge of the underlying reality
» They have no common sense & they can’t plan their answer



Llama-2: https://ai.méfa.com/llama/

» Open source code [ free & open models |/ can be used commercially
» Available on Azure, AWS, HuggingFace,....

MODEL SIZE (PARAMETERS) : PRETRAINED FINE-TUNED FOR CHAT USE CASES

Model : Data collection for

architecture: helpfulness and safety:

138 : Pretraining Tokens: : Supervised fine-tuning:
: 2 Trillion : Over 100,000
Context Length: | Human Preferences:
4096 | Over 1,000,000

70B | .



Meta Al: free public chatbot based on LIama—Qh

G
Y 7

» Connect with “Meta Al” in Messenger app, and WhatsApp.
» 28 specialized Facebook chatbots: e.g. Snoop Dogg as Dungeon Master.




Auto-Regressive Generative Models Suck! Itl j
Auto-Regressive LLMs are doomed.

They cannot be made factual, non-toxic, etc.

They are not controllable Tree of “correct

. answers
Probability e that any produced token takes

us outside of the set of correct answers

Probability that answer of length n is
correct:

> p(correct) = (1-e)"

» This diverges exponentially.
» It’s not fixable (without a major redesign).

Tree of all possible
token sequences

vV VVVvYy

» See also [Dziri...Chol, ArXiv:2305.18654]
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- Auto-Regressive Gehérative Models Suck! h.

» AR-LLMs

» Have a constant number of computational steps between input and
output. Weak representational power.

» Do not really reason. Do not really plan, Have no common sense
» Noema Magazine, August 2023

Al And The Limits Of Language

An artificial intelligence system trained on words and sentences alone will never
approximate human understanding.

ESSAY ~ TECHNOLOGY & THE HUMAN

BY JACOB BROWNING AND YANN LECUN
AUGUST 23, 2022



Limitations of LLMs: no planning!

» Auto-Regressive LLMs (at best)
approximate the functions of the
Wernicke and Broca areas in the brain.

» What about the pre-frontal cortex?

Front Left Side View Back
ArXiv:2301.06627 ArXiv:2206.10498

DISSOCIATING LANGUAGE AND THOUGHT IN Large Language Models Still Can’t Plan
LARGE LANGUAGE MODELS: A COGNITIVE PERSPECTIVE (A Benchmark for LLMs on Planning and Reasoning
N PrEPRINT about Change)
Kyle Mahowald* Anna A. Ivanova*
The University of Texas at Austin Massachusetts Institute of Technology .
mahowald @utexas.edu annaiv@mit.edu Karthik Valmeekam™ Alberto Olmo*
School of Computing & Al School of Computing & Al
iz Arizona State University, Tempe. Arizona State University, Tempe.
Idan A. Blank Nancy Kanwisher

University of California Los Angeles Massachusetts Institute of Technology Evaiwreltlanm e Bo. moGasedn

iblank @psych.ucla.edu ngk@mit.edu

Sarath Sreedharan Subbarae Kambhampati

Joshua B. Tenenbaum Evelina Fedorenko Department of Computer Science, School of Computing & Al

Massachusetts Institute of Technology Massachusetts Institute of Technology Colorado State University, Fort Collins. Arizona State University, Tempe.

jbt@mit.edu evelina9 @mit.edu sarath.sreedharan@colostate.edu rao®asu.edu



~ Auto-Regressive LLI\II;# Suck ! h

» Auto-Regressive LLMs are good for
» Writing assistance, first draft generation, stylistic polishing.

» Code writing assistance

» What they not good for:
» Producing factual and consistent answers (hallucinations!)

» Taking into account recent information (anterior to the last training)

» Behaving properly (they mimic behaviors from the training set)

» Reasoning, planning, math

» Using “tools”, such as search engines, calculators, database queries...

» We are easily fooled by their fluency.
» But they don’t know how the world works.



- Current Al Technologyfiis (still) far from Huma

» Machines do not learn how the world works, like animals and humans
» Auto-Regressive LLMs can not approach human-level intelligence
» Fluency, but limited world model, limited planning, limited reasoning.

» Most human and animal knowledge is non verbal.

» We are still missing major advances to reach animal intelligence
» Al Is super-human in some narrow domains

» There is no questions that, eventually, machines will eventually
surpass human intelligence in all domains

» Humanity’s total intelligence will increase
» We should welcome that not fear it.



We are missing something really big!

» Never mind humans, cats and dogs can do amazing feats
» Robots intelligence doesn’t come anywhere close

» Any 10 year-old can learn to clear up the dinner table and fill up
the dishwasher in minutes.

» \We do not have robots that can do that.

» Any 17 year-old can learn to drive a car in 20 hours of practice
» We still don’t have unlimited Level-5 autonomous driving

» Any house cat can plan complex actions

» We keep bumping into Moravec’s paradox
» Things that are easy for humans are difficult

for Al and vice versa.




- Data bandwidth and %Iume: LLM vs child. h I\

> LLM
» Trained on 1.0E13 tokens (0.75E13 words). Each token is 2 bytes.

» Data volume: 2.0E13 bytes.
» Would take 170,000 years for a human to read (8h/day, 250 w/minute)

» Human child
» 16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)

» 2 million optical nerve fibers, carrying about 10 bytes/sec each.
» Data volume: 1.1E15 bytes

» A four year-old child has seen 50 times more data than an LLM !



|

|
- Three challenges forA;I’f'& Machine Learning \i

1
1

» 1. Learning representations and predictive models of the world
» Using Self-supervised learning from video and other sensory inputs
» learning to represent the world in a non task-specific way
> Learning predictive world models for planning and control
» 2. Learning to reason, like Daniel Kahneman'’s “System 2”
» Beyond feed-forward, System 1 subconscious computation.
» Making reasoning compatible with learning.
> Reasoning and planning as energy minimization.

» 3. Learning to plan complex actions to satisfy objectives
» Learning hierarchical representations of action plans



What are we missing?

» Systems that learn world models from
sensory inputs

» E.g. learn intuitive physics from video

» Systems that have persistent memory
» Large-scale associative memories

» Systems that can plan actions
» So as to fulfill an objective

» Reason like “System 2” in humans

» Systems that are controllable & safe
» By design, not by fine-tuning.
» Objective-Driven Al Architecture




Objective-Driven Al Systems

Al that can learn, reason, plan,
Yet Is safe and controllable

“A path towards autonomous machine intelligence”
https://openreview.net/forum?id=BZ5alr-kVsf

[various versions of this talk on YouTube]


https://openreview.net/forum?id=BZ5a1r-kVsf

| Modular Cognitive Arlq"bitecture for Objective-C

» Configurator
» Configures other modules for task

» Perception
» Estimates state of the world

» World Model
» Predicts future world states

» Cost
» Compute “discomfort”

» Actor
» Find optimal action sequences

» Short-Term Memory

» Stores state-cost episodes percept



| Objective-Driven Al ’p# ' '

» Perception: Computes an abstract representation of the state of the world
» Possibly combined with previously-acquired information in memory

» World Model: Predict the state resulting from an imagined action sequence
» Task Objective: Measures divergence to goal

» Guardrail Objective: Immutable objective terms that ensure safety

» Operation: Finds an action sequence that minimizes the objectives

Initial World state Predicted state | oo

representation Sequence

) representation
Action
Seqguence




- Objective-Driven Al: Wltistep/Recurrent Worl

» Same world model applied at multiple time steps
» Guardrail costs applied to entire state trajectory
» This is identical to Model Predictive Control (MPC)
» Action inference by minimization of the objectives
» Using gradient-based method, graph search, DP, MCTS,....

Final state Cost

representation

Predicted state
representation

World state
representation




- Objective-Driven Al: N#)n-Deterministic Worlcil

» The world is not deterministic or fully predictable
» Latent variables parameterize the set of plausible predictions
» Can be sampled from a prior or swept through a set.

» Planning can be done for worst case or average case
» Uncertainty in outcome can be predicted and quantified

Final state Cost

representation

Predicted state
representation

World state
representation




C i | Y. LeCun
~ Objective-Driven Al ‘}‘erarchical Planning

» Hierarchical World Model and Planning
» Higher levels make longer-term predictions in more abstract representations

» Predicted states at higher levels define subtask objectives for lower level
» Guardralil objectives ensure safety at every level

Task
Objective

slinitial

Subtask
Objective

sO initial



 Objective-Driven Al: H&erarchical Planning h

» Hierarchical Planning: going from NYU to Paris

Taxi or train? Which
EWR or JFK? Airline?

Distance
To Paris

At NYU

hail or call?
Obstacles? Traffic?

Distance
To airport

Sitting in

my NYU

ofice (a0) e
Go down Grab a taxi

In the street To airport



 Objective-Driven Al: H&erarchical Planning h

» Multiple levels of world models

» Predicted state at level k
determines subtask

for level k-1

» Gradient-based optimization
can be applied to action
variables at all levels

» Sampling can be applied

s2 final

s2 initial

a2
)

a2

sl final

to latent variables @ @
at all levels. (20) (20)
sO initial sO final
© a0 a0 |




How could Machines
Learn World Models
from Sensory Input?

with
Self-Supervised Learning



How could machines learn like animals and humans?

Actions I face tracking | rational, goal-

c § biolegical. directed actions
8 | motion | | . . ' | !
% § | | § E | 5 ! : § gravity, inertia
O Physics | § I stability, | conservation of
) ' ' ' ' ' : sup|c:>ort _ | momentum
D_ . . ] ] 1 !
I ObJect permanence shape
. 5 : _ _ constancy
Objects § § § § I solldlty r|g|d|ty , _ .
[Emmanuel | I E——— categorles Age (months)

Dupoux]| "9 1 2 3 4 5 6 7 8 9 1011 12 13 14

» How do babies learn
how the world
works?




Generative World Models with Self-Supervised

» Generative world model architecture

Representation of the DeC(Sa:) - Prediction of the

State of the world State of the world
At time t At time t+1

T @t i jL% T ,‘;“ ‘ A ﬂ A“&" | 1 L & ‘ %
This is a [...] of text extracted This is a piece of text extracted
[...] alarge set of [...] articles from a large set of news articles

W) ‘:; g
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Generative Architectures DO NOT Work for Imaga$ 1) iy a

. i Mathieu,
> Because the world is only partially [Coupri&
predictable LeCun
» A predictive model should ICLR 2016]

represent multiple predictions

» Probabilistic models are
Intractable in high-dim continuous
domains.

» Generative Models must predict
every detail of the world

» My solution: Joint-Embedding
Predictive Architecture

[Henaff, Canziani, LeCun ICLR 2019]




o Y. LeCun
Joint Embedding World Model: Self-Supervis{ad

» Joint Embedding Predictive Architecture [LeCun 2022], [Assran 2023]

Pred(s;) 3 Prediction of the
Y  Representation of the

State of the world

Representation of the
State of the world
Attime t

I D(sy, 5y) I At time t+1

Transformation,
Action




- Architectures: Generafive vs Joint Embeddinh' {

» Generative: predicts y (with all the details, including irrelevant ones)
» Joint Embedding: predicts an abstract representation of y

Pred(sx)
Y

|Dyy

)
?

a) Generative Architecture
Examples: VAE, MAE...

/I Pred %

ID sy,sy

| 5%

b) Joint Embedding Architecture



Joint Embedding Architectures

p» Computes abstract representations for x and y
» Tries to make them equal or predictable from each other.

/I D(3y7 §y) I\ /I Pred Sﬂ?)& Pred(3x7 Z) g
Y

ID Sy,Sy)I ID<Sy78y
S
'Enc(a:). 'Enc(y). 'Enc | Enc 'Enc | Enc
a) Joint Embedding Architecture (JEA) b) Deterministic Joint Embedding c) Joint Embedding Predictive
Examples: Siamese Net, Pirl, MoCo, Predictive Architecture (DJEPA) Architecture (JEPA)
SimCLR, BarlowTwins, VICReg, Examples: BYOL, VICRegL, I-JEPA Examples: Equivariant VICReg



- Architecture for the Wc;)!'rld model: JEPA

» JEPA: Joint Embedding
Predictive Architecture.

» X: observed past and present

» vy future
» a: action

» z: latent variable (unknown)
» D( ): prediction cost

» C(): surrogate cost

» JEPA predicts a representation Enc(x)
of the future Sy from a
representation of the past and
present Sy




Energy-Based Models

Capturing dependencies through an energy function



 Energy-Based Model'# Implicit function h

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape




g A FFI 18 | fl Y. LeCun
raining Energy—Ba@“ Models: Collapge Pr

» A flexible energy surface can take any shape.
» We need a loss function that shapes the energy surface so that:
» Data points have low energies

» Points outside the regions of high data density have higher energies.

Collapse! Contrastive Method Regularized Methods

|
'

\/




- EBM Training: two categories of methods |L~

» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
Method

Contrastive
samples

» Pull up on energy of
suitably-generated
contrastive samples

\

» Scales very badly with
dimension

» Regularized Methods Training | N
. ... samples Regularized
» Regularizer minimizes the Method 1
volume of space that can =
X

take low energy -




- Recommendations:

» Abandon generative models
» in favor joint-embedding architectures

» Abandon probabilistic model
» in favor of energy-based models

» Abandon contrastive methods
» in favor of regularized methods

» Abandon Reinforcement Learning
» In favor of model-predictive control
» Use RL only when planning doesn’t yield the

predicted outcome, to adjust the world model
or the critic.




Training a JEPA with Regularized Methods i

i
!

» Four terms in the cost
» Maximize information

content in i
representation of x Pred(sz, z) 3 Prediiction
.. : i Yy Error
» Maximize information

_ Maximize ~ Maximize
content In Information ‘ D(Sy, Sy)‘ Information
Content Content

representation of y

o - R(z)

» Minimize Prediction —
Minimize
error Information
Content

» Minimize information
content of latent
variable z




I
VICReg: Variance, Invariance, Covariance Regul'

» Variance:

» Maintains variance of
components of
representations

— /Var(v)]*

» |Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



I
VICReg: Variance, Invariance, Covariance Regul'

» Variance: Covar(v;, v;) Covar(v;,v;)

» Maintains variance of
components of
representations

— /Var(v)]* [1 —/Var(v;)]*

» Covariance:

» Decorrelates
components of
covariance matrix of
representations

» Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



!
VICReg: Variance, Invariance, Covariance Regul

» Variance: Covar(vs, v;) Covar(v;,v;)

> Maintai .
Maintains variance of _ Tl _ e
components of

representations
» Covariance:
» Decorrelates 3:1:

components of
covariance matrix of
representations

Enc(y)

» Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



SSL-Pretrained Joint Embedding for Image Hﬁe ] '

JEA pretrained with VICReg Training a supervised linear head

d=8192

Linear
Classifier

d=2048

FeX(x) FeX(y) CO nVN ext
ConvNet

label

" “polar bear”
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VICReg: Results with linear head and semi-leLi e

Linear Semi-supervised

Method Top-1  Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 254 564 484 804
MoCo He et al. (2020) 60.6 - - - - -
PIRL Misra & Maaten (2020) 63.6 - - - 57.2 83.8
CPC v2 Hénalft et al. (2019) 63.8 - - - - -
CMC Tian et al. (2019) 66.2 - - - - -
SimCLR Chen et al. (2020a) 69.3 89.0 483 656 755 878
MoCo v2 Chen et al. (2020c¢) 71.1 - - - - -
SimSiam Chen & He (2020) 71.3 - - - - -
SwAV Caron et al. (2020) 71.8 - - - - -
InfoMin Aug Tian et al. (2020) 73.0 91.1 - - - -
OBoW Gidaris et al. (2021) 73.8 - - - 82.9 90.7
BYOL Grill et al. (2020) 74.3 91.6 53.2 688 784 89.0
SwAV (w/ multi-crop) Caron et al. (2020) 75.3 539 702 785 899

Barlow Twins Zbontar et al. (2021) 73.2
VICReg (ours) 73.2

79.2 893
548 695 794 895

O \O
—
—_—
L
“
o
(@)
o
-]




VICReg: Results with transfer tasks. I

Linear Classification Object Detection
Method Places205 VOCO7 iNatl8  VOCO7+12 COCO det COCO seg
Supervised 53.2 87.5  46.7 81.3 39.0 354
MoCo He et al. (2020) 46.9 79.8 315 - : :

PIRL Misra & Maaten (2020) 49.8 1.1  34.1 - - -
SIMCLR Chen et al. (2020a) 52.5 85.5 37.2 - - i
MoCo v2 Chen et al. (2020c¢) 51.8 86.4  38.6 82.5 39.8 36.1

SimSiam Chen & He (2020) - - - 82.4 - -
BYOL Grill et al. (2020) 54.0 86.6 47.6 - 40.41 37.0
SWAV (m-c) Caron et al. (2020)  56.7 88.9 48.6 82.6 41.6 37.8
OBoW Gidaris et al. (2021) 56.8 89.3 - 82.9 - -
Barlow Twins Grill et al. (2020)  54.1 862 465 82.6 40.07 36.71

VICReg (ours) 543 86.6 47.0 82.4 394 364




VICRegL: local matching latent variable for

» Latent variable optimization:
» Finds a pairing between local feature vectors of the two images

» [Bardes, Ponce, LeCun, NeurlPS 2022, arXiv:2210.01571]

LOCAL CRITERION Local Embeddings: D X H X W

MODEL - |:| 000

Poolin
Ve ﬂ{
V\U Lo Expander
GLOBAL CRITERION
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VICRegL: local matching latent variable for s{i

Linear Cls. (%) Linear Seg. (mloU)
ImageNet Pascal VOC Cityscapes

Method Epochs  Frozen Frozen  Fine-Tuned Frozen
Global features
MoCo v2 [Chen et al., 2020b] 200 67.5 35.6 64.8 14.3
SimCLR [Chen et al., 2020a] 400 68.2 45.9 65.4 17.9
BYOL [Grill et al., 2020] 300 123 47.1 65.7 22,6
VICReg [Bardes et al., 2022] 300 fid e 47.8 65.5 235
Local features
PixPro [Xie et al., 2021] 400 60.6 52.8 67.5 22,6
DenseCL [Wang et al., 2021] 200 65.0 453 66.8 11.2
DetCon [Hénaff et al., 2021] 1000 66.3 53.6 67.4 16.2
InsLoc [Yang et al., 2022] 400 45.0 24.1 64.4 7.0
CP? [Wang et al., 2022] 820 53.1 211 65.2 8.4
ReSim [Xiao et al., 2021] 400 595 51.9 673 12.3
Ours
VICRegl. a = 0.9 300 71.2 54.0 66.6 23.1

VICRegL a = 0.75 300 70.4 55.9 67.6 25.2




Distillation Methods

» Modified Siamese nets

» Predictor head eliminates variation of
representations due to distortions

» Examples:

» Bootstrap Your Own Latents [Grill
arXiv:2006.07733]

» SimSiam [Chen & He arXiv:2011.10566]
» DINOv2 [Oquab arXiv:2304.07193]

» Advantages
» NO negative samples




DINOv2: image foundation mode| = .

p self-supervised generic image features
» Demo: |
P Paper: [Oquab et al. ArXiv:2304.07193] e T

» Classification Lo flops

» 86.5% on IN1k with frozen features and
linear head.

Finegrained Classification Instance Retrieval

B
2
<
—
=
9
&

<

» Fine-grained classification
» Depth estimation

1010 10! x 100 10"

» Semantic segmentation flops flops
» Instance Retrieval

improves over the previous state of the art in

self-supervised learning (SSL), and reaches
performance comparable with weakly-
supervised features (WSL).



https://dinov2.metademolab.com/

DINOv2: image foundation model

» Demo:
P Paper: [Oquab et al. ArXiv:2304.07193]



https://dinov2.metademolab.com/

DINOv2: Joint Embedding Architecture

. . . kNN linear
> SS L b y d ISt I Iatl on Method Arch. Data Text sup. val val Real V2
Weakly supervised
cross-ent CLIP ViT-L/14 WIT-400M v 79.8 84.3 88.1 753
CLIP ViT-L /14334 WIT-400M v 80.5 85.3 88.8 758
SWAG ViT-H/14 IG3.6B v 82.6 85.7 887 T77.6
OpenCLIP ViT-H/14 LAION v 81.7 84.4 884 755
OpenCLIP  ViT-G/14 LAION v 83.2 86.2 894  77.2
. : EVA-CLIP ViT-g/14 custom™ v 83.5 86.4 89.3 774
classify guantize
Self-supervised

MAE ViT-H/14 [Net-1k X 49.4 76.6 83.3 648
DINO ViT-S/8 [Net-1k X 78.6 79.2 855  68.2

SEERv2 RG10B 1G2B X — 79.8 - -
MSN ViT-L/7 [Net-1k X 79.2 80.7 86.0 69.7
EsViT Swin-B/W=14 INet-1k X 79.4 81.3 87.0 704
Mugs ViT-L/16 INet-1k X 80.2 821 86.9 708
iBOT ViT-L/16 INet-22k X 72.9 82.3 875 724
ViT-S/14 LVD-142M X 79.0 81.1 86.6 709
DINOv2 ViT-B/14 LVD-142M X 82.1 84.5 88.3 75.1
ViT-L/14 LVD-142M X 83.5 86.3 89.5  78.0
ViT-g/14 LVD-142M X 83.5 86.5 89.6 784




DINOv2

» Feature visualization: RGB = top 3 principal components





DINOv2

» Feature extraction, depth estimation, segmentation





I{Qanopy Height Map using DINOv2

350 km 1km 300m

P Estimates tree canopy
height from satellite
Images using DINOv2
features

» Using ground truth from
Lidar images

Meta CHM

Meta CHM

LIDAR
ground truth

>=20

» 0.5 meter resolution
Images

» [ArXiv:2304.07213]

» Tolan et al.: Sub-meter
resolution canopy height Sadm
maps using self- =
supervised learning and a 0 ey
vision transformer trained s
on Aerial and GEDI Lidar

Figure 1: Canopy Height Map (CHM) for California, with inset showing zoomed-in region with input
RGB imagery and LIDAR ground truth

RGB image

Meta CHM

canopy height (m)
=

RGB image




: i P‘ Y. LeCun
Image-JEPA: uses masking & transformer ar&l

» “SSL from images with a JEPA” predictor

context N

» [M. Assran et al arxiv:2301.08243] encoder - R

context

» Jointly embeds a context and a
number of neighboring patches. " f , BR o, BN

» Uses predictors —
» Uses only masking > mm---.-

1
1
1
1
]
1
]
R
Semi-Supervised ImageNet-1K 1% Evaluation vs GPU Hours : : 1
L}
1 1
74 ViT-H/14 - o
( ) . arge O .
72 3°°ep’.~' ViT-H/14 encoder 1 : "
» ]

70 s A ViT-B/16 o (a6ooep) G
= § ooep) L
L rd -
= ©8 e H 1® ViT-L/a6 ! .
8—- 66 ‘,f .'-' (z600ep) e i 1 ) :

K ] G L L L 1

ad & H ® I-JEPA fo Sl .
Viirs-B]IG) 6’ L] ViT-SI']_G A iBOT "‘ ------------------------ LZ

oocp (8ooep) 0 MAE

60 -

103 104

Pretraining GPU Hours



I-JEPA Results

» Training is fast

» Non-generative method
beat reconstruction-
based generative
methods such as
Masked Auto-Encoder

» (with a frozen trunk).

Top 1 (%)

ImageNet Linear Evaluation vs GPU Hours

@ IJEPA [ MAE

80 Vil-H/1i4 @@
&
78 — s
R -l ViT-H/1y4
& -
76 — & HvirLae
.“ ‘-’
74 — "‘ ;’
ViT-B/16 & s
72 — ;‘
*’.
70 — '.'
*.
68 — O vir-B/6
l L1 l | Lol
109 10*

Pretraining GPU Hours



I-JEPA Results on ImageNet ls\

» JEPA better than generative Targets Arch.  Epochs Top-1
Pixels ViT-L/16 800 40.7
» Closing the gap with methods DiEeion o fpocs  Hopel
that use data augments Methods without view data augmentations
data2vec [7] VIiT-L/16 1600 N0
ViT-B/16 1600 68.0
» Methods with only masking MAE [34] ViT-L/16 1600  76.0
. ViT-H/14 1600 T7.2
> ﬁ
No data augmentation — — —
I-JEPA ViT-L/16 600 T
i ViT-H/14 300 795
» Methods with data ViT-H/16442 300 81.1
augmentatlon Methods using extra view data augmentations
» Similar to SIMCLR : SimCLR v2 [20] RNI152 (2x) 800 79.1
DINO [17] ViT-B/8 300 80.1

iBOT [74] ViT-L/16 250 81.0



I-JEPA Results on ImageNet with 1% traininglﬂ'

Top 1 (%)

» JEPA better than generative —_Method Arch. Epochs  Top-1
architecture on pixels. Methods without view data augmentations
» Closing the gap with methods data2vec [7] ViT-L/16 1600 73.3
that use data augments _ ViT-L/16 1600 67.1
. . MAE [ 4] ;
» Methods with only masking ViT-H/14 1600 715
» Methods with data =~ =——) ViT-L/16 600 69.4
augmentation I-JEPA ViT-H/14 300 FE
o vy o \ ViT-H/16445 300 77.3
300ep) ; ) SToL/x
Z B H X;f;ﬁi?‘ 4 Xezo]é/mﬁ Methods using extra view data augmentations
R $ iBOT [74] VIT-B/16 250 69.7
K Ol ViT-L/i6 - .
66 — ; (1600ep) ® 1JEPA DINO [l 7] VlT'BfS 300 70.0
ar i A iBOT SimCLR v2 [33] RNI151(2x) 800 70.2
ViT-B/16 6" ViT-S/16 0 MAE .
oocp) A VTS O datasvec BYOL [23] RN200 (2x) 800 71.2
S T T T MSN [?] ViT-B/4 300 7,

Pretraining GPU Hours



I-JEPA: Visualizing Predicted Representation

original context predictions original context




MC-JEPA: Motion & Content JEPA

[Bardes, Ponce, LeCun 23]

» Simultaneous SSL for
» Image recognition

Encoder

Self-Supervised
Learning
of
Content Features

» Motion estimation

» Trained on
» ImageNet 1k

» Various video datasets

Encoder

» Uses VCReg to prevent
collapse

» ConvNext-T backbone

Self-Supervised
Flow Estimation

Encoder




MC-JEPA: Motion & Content JEPA

» Motion estimation architecture uses a top-down hierarchical
predictor that “warp” feature maps.

Motion Learning

I \VC Reg.|Cycle Loss| VC Reg.|[Cycle Loss]|
L ¥ £ t

VCReg] .~

@ e

v | v v
T vC Reg.||CycIe Loss] VC Reg.|[Cycle Loss|

IVC Reg.|

Flow Estimator

Archftectury

(__J Non-parametric Function
| Learnable Function

. Flow Estimator

[ ] Loss Function

. Flow frame t -> t+1 at layer |

Features frame X at layer |

Content Learning

gncode I(é::::.denI
)
Vi

- -
» e'i
"B

View 1 View 2



KITTI

Sintel

MC-JEPA: Optical Flow Estimation Results | © A

Reference Image Ground Truth MC-JEPA




- Problems to Solve

» JEPA with regularized latent variables
» Learning and planning in hon-deterministic environments

» Planning algorithms in the presence of uncertainty
» Gradient-based methods and combinatorial search methods

» Learning Cost Modules (Inverse RL)
» Energy-based approach: give low cost to observed trajectories

» Planning with inaccurate world models
» Preventing bad plans in uncertain parts of the space

» Exploration to adjust world models
» Intrinsic objectives for curiosity



~ Things we are workirlg& on h

» Self-Supervised Learning from Video
» Hierarchical video JEPA trained with SSL

» LLMs that can reason & plan, driven by objectives

» Dialog systems that plan in representation space and use AR-LLM to
turn representations into text

» Learning hierarchical planning
» Training a multi-timescale H-JEPA on toy planning problems.



Points |1
» Computing power ”

» AR-LLM use a fixed amount of computation per token

» Objective-Driven Al is Turing complete (inference == optimization)

» We are still missing essential concepts to reach human-level Al
» Scaling up auto-regressive LLMs will not take us there

» \We need machines to learn how the world works

» Learning World Models with Self-Supervised Learning and JEPA
» Non-generative architecture, predicts in representation space

» Objective-Driven Al Architectures
» Can plan their answers

» Must satisfy objectives: are steerable & controllable
» Guardralil objectives can make them safe by construction.



Future Universal Virtual Assistant

» All of our interactions with the digital world
will be mediated by Al assistants.
» They will constitute a repository of all

human knowledge and culture
» They will constitute a shared infrastructure
Like the Internet today.

» These Al platform MUST be open source

» Otherwise, our culture will be controlled by a few companies
on the West Coast of the US or in China.

» Training them will have to be crowd-sourced
» Open source Al platforms are necessary



What does this vision mean for industrial polic ‘-
| | et
» Al systems will become a common platform
» The platforms (foundation models) will need to be open

» They will condense all of human knowledge

» Guardrail objectives will be shared for safety

» Training and fine-tuning will be crowd-sourced
» Linguistic, cultural, and interest groups will fine-tune base models to
cater to their interests.
» Proprietary systems for vertical applications will be built on top
» When everyone has an Al assistant, we will need
» Massive computing infrastructure for inference: efficient inference chips.

» Move as much as possible to the edge.



 Questions i L i
» How long is it going to take to reach human-level Al?
» Years to decades. Many problems to solve on the way.

» Before we get to HLAI, we will get to cat-level Al, dog-level Al,...

» What is AGI?
» There is no such thing. Intelligence is highly multidimensional

» Intelligence is a collection of skills + ability to learn new skills quickly
» Even humans can only accomplish a tiny subset of all tasks

» Will machines surpass human intelligence
» Yes, they already do in some narrow domains.

» There is no question that machine will eventually surpass human
intelligence in all domains where humans are intelligent (and more)



s I : 1
 Questions "lb h
» Are there short-term risks associated with powerful Al?
» Yes, as with every technology.
» Disinformation, propaganda, hate, spam,...: Al is the solution!
» Concentration of information sources
» All those risks can be mitigated

» Are there long-term risks with (super-)human-level Al?
» Robots will not take over the world! a mistaken projection of human nature on machines

» Intelligence is not correlated with a desire to dominate, even in humans
» Objective-Driven Al systems will be made subservient to humans

» Al will not be a “species” competing with us.

» We will design its goals and guardrails.



- Why the doomers aré;i/vrong

» The speculations about the probability of human extinction p(doom) are
just that: speculations.

» There are infinite ways to build dangerous and unreliable Al, and only a
few ways to do it right. But a few good ways is all we need.

» There are infinite ways to build unreliable turbojets,...

» ... but safe and reliable turbojets do exist. They are the ones we use.

» All doom scenarios assume that there is no way to build safe Al systems
» Some scenarios assume that the slightest mistake will spell doom.

» But this is not how technology development works.

» Developing safe and reliable Al systems will take time
» Safer Al is simply better Al with the proper objectives and guardrails.

» This will take years (decades?) of careful engineering
» Just like the design of safe, reliable, and efficient turbojets.




o

! i
Questions gt h
| | L\
» How to solve the alignment problem?

» Through trial and error and testing in sand-boxed systems

» We are very familiar with designing objectives for human and
superhuman entities. It's called law making.

» What if bad people get their hand on on powerful Al?
Their Evil Al will be taken down by the Good Guys’ Al police.

» What are the benefits of human-level Al?
» Al will amplify human intelligence, progress will accelerate

» As if everyone had a super-smart staff working for them
» The effect on society may be as profound as the printing press

» By amplifying human intelligence, Al will bring a new
era of enlightenment, a new renaissance for humanity.
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