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• We implement a large-scale elliptic curve cryptography (ECC) quantum algorithm that 
computes a private key k from a public key Q (the k-wise elliptic addition of a base point P) 
via a top-down design.

• We follow the subroutines provided in the paper “How to compute a 256-bit elliptic curve 
private key with only 50 million Toffoli gates” by Daniel Litinski. [1]

• After implementing the algorithm, we perform comprehensive resource analysis using 
Microsoft’s Azure Quantum Resource Estimator and compare our resource estimates to 
those theoretically anticipated in Litinski’s paper. 

• This analysis will be useful in determining the efficacy of the ECC algorithm in the age of 
fault-tolerant quantum computers.
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Potential future work includes: 

• More economic implementation of the modular inversion operation by parallelism, method 
outlined in ref [1].

• Resource estimation on generating multiple private keys of the same elliptic curve by repeating 
the second phase estimation with different public keys.

Future Work and References

• We obtain the resource estimation for executing the algorithm on different hardware (Majorana, 
superconducting, and ion trap) with a error budget of 0.333. 

• The fastest architecture is Majorana based Floquet code with a runtime of 1 hour. The minimum 
number of qubits required is also Majorana based architecture with surface code requiring 1.3 
million physical qubits.

• The low T factory fraction in the algorithm results in a low tradeoff between time and space (number 
of physical qubits)

• During the project we have made use of the following resources: the Azure Quantum Development Kit, 
the quantum programming language Q# and the Azure Quantum Resource Estimator. 

• The Modern Quantum Development Kit (Modern QDK) is the software development kit that interfaces 
Microsoft’s cloud computing Azure Quantum service.

Methods 
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Structure of the E.C.C. Quantum Algorithm
• We studied a 256-bit ECC algorithm in Q#, a quantum computing friendly programming 

language developed by Microsoft. This system has the NIST-recommended minimum key 
size and so it is reasonable to anticipate that it will be the first widely used cryptosystem to 
be compromised by quantum computing.

• In our project, we wrote a quantum algorithm using Shor’s algorithm for discrete logarithms 
which would break the ECC systems on a hypothetical quantum computer.

• As of now, the industry accepted resource estimates for breaking a 256-bit elliptic curve 
are 2330 qubits and 126 billion Toffoli gates. In 2015, the NSA announced a long-term plan 
in 2015 to transition to a new cipher suite that is resilient to quantum attacks.

• The ECC algorithm is a cryptographic scheme based on elliptic curves with the main goal 
of determining a private key using a public key as an input. 

• An elliptic curve is defined as follows: y² = x³ + c1 x + c2 , a typically prime modulus p and 
a base point P = (Px, Py). Points on the curve are integers modulo p. A key pair can be 
created by generating a random integer 0 ≤ k ≤ p − 1 as the private key and computing Q = 
[k]P = P + … + P as the public key via elliptic curve point addition. 

• Given two elliptic curve points P = (a, b) and Q = (c, d), their elliptic sum R = P + Q is given 
by the diagram below together with some other special cases. A multiple of the base point 
P can be computed efficiently via repeated addition but there is no known efficient classical 
algorithm for the reverse operation.

• Q# is a high-level programming language part of 
the QDK which is conducive to running and 
developing quantum algorithms. 

• It draws from elements in Python and C# and 
lends itself to a model for program writing with 
loops, if/then statements and common data 
types. Importantly, it introduces new quantum-
specific data structures and operations.

• The diagram on the right gives a flavor of how the 
language works. 

• In the first quantum circuit, the 
algorithm consists of two 
phase estimation steps with 
two different sets of unitaries 
performing elliptic curve point 
addition with base point P and 
public key Q acting on two 
quantum registers. 

• The ‘windowing technique’ 
ou t l i ned i n t he second 
quantum circuit allows us to 
reduce the number of lookup 
additions. 

• The next step is to code the 
ECPointAdd operation, a 
lengthy 6-step process. 

• The left hand figure shows a 
schematic of the input 
registers of this operation as 
well as the total count of the 
n-controlled Toffoli and 
modular arithmetic 
subroutines. 

• The right hand figure shows a 
similar decomposition of the 
modular arithmetic 
subroutines. 


