

Resource Estimation for Breaking Elliptic Curve Cryptography on Quantum Hardware

STUDENTS: Zhiyao Li, Lingnan Shen, Mark D'Souza

Abstract

- We implement a large-scale elliptic curve cryptography (ECC) quantum algorithm that computes a private key k from a public key Q (the k-wise elliptic addition of a base point P) via a top-down design.
- We follow the subroutines provided in the paper "How to compute a 256-bit elliptic curve private key with only 50 million Toffoli gates" by Daniel Litinski. [1]
- After implementing the algorithm, we perform comprehensive resource analysis using Microsoft's Azure Quantum Resource Estimator and compare our resource estimates to those theoretically anticipated in Litinski's paper.
- This analysis will be useful in determining the efficacy of the ECC algorithm in the age of fault-tolerant quantum computers.

Project Background

- We studied a 256-bit ECC algorithm in Q#, a quantum computing friendly programming language developed by Microsoft. This system has the NIST-recommended minimum key size and so it is reasonable to anticipate that it will be the first widely used cryptosystem to be compromised by quantum computing.
- In our project, we wrote a quantum algorithm using Shor's algorithm for discrete logarithms which would break the ECC systems on a hypothetical quantum computer.
- As of now, the industry accepted resource estimates for breaking a 256-bit elliptic curve are 2330 qubits and 126 billion Toffoli gates. In 2015, the NSA announced a long-term plan in 2015 to transition to a new cipher suite that is resilient to quantum attacks.
- The ECC algorithm is a cryptographic scheme based on elliptic curves with the main goal of determining a private key using a public key as an input.
- An elliptic curve is defined as follows: $y^2 = x^3 + c1 x + c2$, a typically prime modulus p and a base point P = (Px, Py). Points on the curve are integers modulo p. A key pair can be created by generating a random integer $0 \le k \le p - 1$ as the private key and computing Q =[k]P = P + ... + P as the public key via elliptic curve point addition.
- Given two elliptic curve points P = (a, b) and Q = (c, d), their elliptic sum R = P + Q is given by the diagram below together with some other special cases. A multiple of the base point P can be computed efficiently via repeated addition but there is no known efficient classical algorithm for the reverse operation.

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Methods

- During the project we have made use of the following resources: the Azure Quantum Development Kit, the quantum programming language **Q#** and the **Azure Quantum Resource Estimator**.
- The Modern Quantum Development Kit (Modern QDK) is the software development kit that interfaces Microsoft's cloud computing Azure Quantum service.
- Q# is a high-level programming language part of the QDK which is conducive to running and developing quantum algorithms.
- It draws from elements in Python and C# and lends itself to a model for program writing with loops, if/then statements and common data types. Importantly, it introduces new quantumspecific data structures and operations.

operation ModAdd(x: Qubit[], y: Qubit[]): Unit is Adj + Ctl { // x, y are the two numbers to be added // the result is stored in y $// |y> -> |y + x \mod p>$

use ancilla = Qubit[1]; IncByLE(x, y + ancilla);

• The diagram on the right gives a flavor of how the language works.

X(ancilla[0]);

Structure of the E.C.C. Quantum Algorithm

(a) Phase estimation circuit for the generation of private key k using public key Q and base point P $|+\rangle^{\otimes n}$ $\approx |\operatorname{ctrl}\rangle = |+\rangle^{\otimes n}$ QFT^{-1} $|x\rangle = |P_x\rangle$ $U_Q \mid U_{2Q} \mid U_{4Q} \mid$ (b) Windowed elliptic-curve point addition in groups of 16 $|+\rangle^{\otimes 16}$ $|+\rangle^{\otimes 16}$ Input $c = 0, 1, 2, 3, \dots, 2^{16} - 1$ Input $c \ge$ $\approx |a\rangle = |0\rangle^{\otimes n} \equiv$ Lookup (a, b) = [c]RUnLookup $\approx |b\rangle = |0\rangle^{\otimes n} \equiv$ ECPointAdd $U_R \mid U_{2R} \mid U_{4R} \mid$ $\approx |\lambda_r\rangle = |0\rangle^{\otimes n}$ Elookup $\lambda_r = (3a^2 + c_1)/(2b)$ UnLookup

ADVISERS: Mathias Soeken (Microsoft), Mariia Mykhailova (Microsoft), Arka Majumdar (UW) **SPONSORS:** Microsoft **Accelerating Quantum-Enabled Technologies Program (AQET)**

// Add(-p) to y and ancilla Adjoint IncByL(get_p(), y + ancilla); // controlled by ancilla and add(p) to y Controlled IncByL(ancilla, (get_p(), y)); ApplyIfLessLE(X, x, y, ancilla[0]);

• In the first quantum circuit, the algorithm consists of two phase estimation steps with two different sets of unitaries performing elliptic curve point addition with base point *P* and public key Q acting on two quantum registers.

- The 'windowing technique' outlined in the second quantum circuit allows us to reduce the number of lookup additions.
- The next step is to code the ECPointAdd operation, a lengthy 6-step process.
- The left hand figure shows a schematic of the input registers of this operation as well as the total count of the n-controlled Toffoli and modular arithmetic subroutines.
- The right hand figure shows a similar decomposition of the modular arithmetic subroutines.

Resource Estimation Analysis

- superconducting, and ion trap) with a error budget of 0.333.
- million physical qubits.
- of physical qubits)

🔟 Run name

- \equiv Majorana with 1e-6, floquet
- Majorana with 1e-4 error, floquet
- Superconducting with 1e-4 error, surface
- Superconducting with 1e-3 error, surface
- Majorana with 1e-6, surface
- Majorana with 1e-4 error, surface
- \equiv lon trap with 1e-4 error, surface
- Ion trap with 1e-3 error, surface

Potential future work includes:

- outlined in ref [1].
- the second phase estimation with different public keys.

[1] Litinski, Daniel. "How to compute a 256-bit elliptic curve private key with only 50 million Toffoli gates." arXiv preprint arXiv:2306.08585 (2023).

• We obtain the resource estimation for executing the algorithm on different hardware (Majorana,

• The fastest architecture is Majorana based Floquet code with a runtime of **1 hour**. The minimum number of qubits required is also Majorana based architecture with surface code requiring **1.3**

• The low T factory fraction in the algorithm results in a low tradeoff between time and space (number

d	ay 1 v Runtime	veek 1 month e (logarithmic)	1 year	1 decade
	Runtime 📥	Physical qubits	T factory fraction	rQOPS
	1 hours	2,079,728	1.78 %	3,986,666,667
	2 hours	6,856,304	5.73 %	2,146,666,667
	3 hours	2,897,496	2.34 %	1,610,000,000
	5 hours	10,998,120	4.85 %	837,200,000
	10 hours	1,381,744	1.84 %	465,111,112
	1 days	9,484,776	6.61 %	182,000,000
	177 days	2,868,616	1.36 %	1,073,334
	340 days	10,652,720	1.76 %	558,134

Future Work and References

• More economic implementation of the modular inversion operation by parallelism, method

• Resource estimation on generating multiple private keys of the same elliptic curve by repeating