
Resource Estimation for Breaking Elliptic Curve
Cryptography on Quantum Hardware

STUDENTS: Zhiyao Li, Lingnan Shen, Mark D’Souza

ADVISERS: Mathias Soeken (Microsoft), Mariia Mykhailova (Microsoft) , Arka Majumdar (UW)

SPONSORS: Microsoft

 Accelerating Quantum-Enabled Technologies Program (AQET)

• We implement a large-scale elliptic curve cryptography (ECC) quantum algorithm that
computes a private key k from a public key Q (the k-wise elliptic addition of a base point P)
via a top-down design.

• We follow the subroutines provided in the paper “How to compute a 256-bit elliptic curve
private key with only 50 million Toffoli gates” by Daniel Litinski. [1]

• After implementing the algorithm, we perform comprehensive resource analysis using
Microsoft’s Azure Quantum Resource Estimator and compare our resource estimates to
those theoretically anticipated in Litinski’s paper.

• This analysis will be useful in determining the efficacy of the ECC algorithm in the age of
fault-tolerant quantum computers.

Abstract

Project Background

Resource Estimation Analysis

Potential future work includes:

• More economic implementation of the modular inversion operation by parallelism, method
outlined in ref [1].

• Resource estimation on generating multiple private keys of the same elliptic curve by repeating
the second phase estimation with different public keys.

Future Work and References

• We obtain the resource estimation for executing the algorithm on different hardware (Majorana,
superconducting, and ion trap) with a error budget of 0.333.

• The fastest architecture is Majorana based Floquet code with a runtime of 1 hour. The minimum
number of qubits required is also Majorana based architecture with surface code requiring 1.3
million physical qubits.

• The low T factory fraction in the algorithm results in a low tradeoff between time and space (number
of physical qubits)

• During the project we have made use of the following resources: the Azure Quantum Development Kit,
the quantum programming language Q# and the Azure Quantum Resource Estimator.

• The Modern Quantum Development Kit (Modern QDK) is the software development kit that interfaces
Microsoft’s cloud computing Azure Quantum service.

Methods

[1] Litinski, Daniel. "How to compute a 256-bit elliptic curve private key with only 50 million Toffoli gates." arXiv preprint
arXiv:2306.08585 (2023).

Structure of the E.C.C. Quantum Algorithm
• We studied a 256-bit ECC algorithm in Q#, a quantum computing friendly programming

language developed by Microsoft. This system has the NIST-recommended minimum key
size and so it is reasonable to anticipate that it will be the first widely used cryptosystem to
be compromised by quantum computing.

• In our project, we wrote a quantum algorithm using Shor’s algorithm for discrete logarithms
which would break the ECC systems on a hypothetical quantum computer.

• As of now, the industry accepted resource estimates for breaking a 256-bit elliptic curve
are 2330 qubits and 126 billion Toffoli gates. In 2015, the NSA announced a long-term plan
in 2015 to transition to a new cipher suite that is resilient to quantum attacks.

• The ECC algorithm is a cryptographic scheme based on elliptic curves with the main goal
of determining a private key using a public key as an input.

• An elliptic curve is defined as follows: y² = x³ + c1 x + c2 , a typically prime modulus p and
a base point P = (Px, Py). Points on the curve are integers modulo p. A key pair can be
created by generating a random integer 0 ≤ k ≤ p − 1 as the private key and computing Q =
[k]P = P + … + P as the public key via elliptic curve point addition.

• Given two elliptic curve points P = (a, b) and Q = (c, d), their elliptic sum R = P + Q is given
by the diagram below together with some other special cases. A multiple of the base point
P can be computed efficiently via repeated addition but there is no known efficient classical
algorithm for the reverse operation.

• Q# is a high-level programming language part of
the QDK which is conducive to running and
developing quantum algorithms.

• It draws from elements in Python and C# and
lends itself to a model for program writing with
loops, if/then statements and common data
types. Importantly, it introduces new quantum-
specific data structures and operations.

• The diagram on the right gives a flavor of how the
language works.

• In the first quantum circuit, the
algorithm consists of two
phase estimation steps with
two different sets of unitaries
performing elliptic curve point
addition with base point P and
public key Q acting on two
quantum registers.

• The ‘windowing technique’
ou t l i ned i n t he second
quantum circuit allows us to
reduce the number of lookup
additions.

• The next step is to code the
ECPointAdd operation, a
lengthy 6-step process.

• The left hand figure shows a
schematic of the input
registers of this operation as
well as the total count of the
n-controlled Toffoli and
modular arithmetic
subroutines.

• The right hand figure shows a
similar decomposition of the
modular arithmetic
subroutines.

