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The Generator Coordinate Method (GCM) is a typically classical
algorithm that uses variational parameters in a many-body wave
function to model collective atomic motion and, more generally,
benchmark molecular systems. As a quantum hybrid algorithm,
large subspaces have the potential to be efficiently modeled with
relatively low-depth quantum circuits.

The Variational Quantum Eigensolver (VQE) is a well known
classical/quantum hybrid algorithm that, given an initial guess or
ansatz, calculates an expectation value relative to an observable,
then optimizes it to improve the guess, repeating these steps
until the ground state (minimum) energy of a systemis
approximated.

GCM has interesting potential as an alternative to uses of VQE,
where the multi-step classical optimization algorithms necessary
in VQE is replaced by a single step to solve the Hill-Wheeler
eigenvalue problem.

NWQSIim is a Quantum System Simulation Environment within
the High-Performance Computing group at Pacific Northwest
National Lab for classical multi-node, multi-CPU/GPU
heterogeneous High-Performance Computing (HPC) systems.

By creating a streamlined and efficient C++ implementation,
these algorithms will expand the quantum chemistry capabilities
of NWQSim and provide a foundation for researchers to
investigate higher-level quantum chemistry problems.
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The primary goal of this project is to implement GCM and VQE directly in C++
and tie them in to NWQSim. Our implementations of GCM and VQE primarily
use matrix representations for all of the operators and calculations, along with
more complex natively-created C++ objects for representing strings of

operators.

« Based on the system being
investigated, a set of fermionic
operators and variational
coordinates are generated to
represent it.

Ny 2 L. P 3 = .
l (/4) Z‘quq ' Z"'pqapa(] Y Sqp — Lpg
P.q P.q

» These operators are then used in a
classical computation and applied
to a Hartree-Fock state for
evaluation in a quantum device
(NWQSim).
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« The results are used to solve the

generalized Hill-Wheeler eigenvalue
problem.

Hpq = (P(Z))|H|DP(Zy)) ,
Spq = (P(Zp)|P(Zy)) . Hf = EST
f[-’ = f("?/))

Algorithm 1 Quantum GCM (QuGCM) for near-term de-

vices

Require: Hamiltonian matrix H = };h;P;, HF state |®), and a set {I'(Z;)},
where the index i could be a composite up to k terms as in Eq.(23)
Transform all {I"(Z;)}¥ | using JW transformation
Generate unitaries {V;}2, for V; := ¢' %) with Eq.(9) and Eq.(20)
Trotterize each element in {V;}*”, to a linear combination of Pauli strings
for each V, in {V;}, do
Compute }_; h;P;V, classically
for each V,, in {V;}1, do
Compute }; h_j‘/; (P;V,) classically
Compute V]V, classically
Evaluate H,, := Y ; h;(®|V) P;V,|®) in a quantum device
Evaluate S, := (®|V,V,|®) in a quantum device
end for
12: end for
13: Solve the general eigenvalue problem Hf = ESf classically
14: return interested eigenvalues and eigenvectors
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» Outline of the VQE pipeline?.

|
(1a) Hamiltonian representation
(e.g. secondquantized Hamiltonian)

(1b) Encoding of fermionic | | (1c) Grouping and measurement
operators to Pauli operators | | weighting
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Quantum computing subroutines ‘ ‘ Traditional computing subroutines

« The unitary coupled-cluster singles
and doubles (UCCSD) ansatz is the
current VQE ansatz>.

Algorithm 1 Unitary Selective coupled-cluster

Step 1. Generate single and double excita-
tions for a given molecule.

For all single and double excitations [i, al
and |7, 7,a,b] in UCCSD add to ansatz all ex-
citations for which hi[i,a] and hsa[i, j,a,b| are
larger than ;.
repeat

Step 2. Run VQE with the current ansatz
to compute energy, update amplitudes for
each excitation present in ansatz.
Step 3. For each single [i,a] or double
i, j, a, b] excitation present in ansatz using ¢,
and o values from the previous iteration and
additional excitations [k, ¢| or [k, [, ¢, d] gen-
erate triple and quadruple excitations with
the following coeflicients:
t1[i,al - halg, k, b, ¢
hili,al - ta[j, k, b, ¢
talt, j, a,b] - hilk, ¢
hz[l,J a, b] . ['1 [/\ (jf:
ta[t, j,a,b] - holk,l, ¢, d]
Step 4. For each excitation, if the absolute
value of the largest coeflicient computed in

step 3 is larger than ¢, on iteration n, add
this excitation to ansatz.
until termination condition

easuremen t Pauli strings computation (e.g. expectation
(H(8)) = wa(v:(8)|Pul:(0))
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The GCM implementation computes the necessary set of unitaries using
an inverted Jordan-Wigner transform, and creates a set of qubit operators
for guantum computation using a Clifford Transform. The current
implementation also has classical and quantum functions along with
integration into NWQSim for computing the S and H matrices at the core

of the eigenvalue problem.
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The VQE algorithm is currently being implemented using the UCCSD and
the Jordan-Wigner transformation.

« Solving the final eigenvalue problem
with results from GCM calculations

« Make GCM and VQE more user
configurable along with configurable
Ansatz for ease of use

« Optimization and testing to ensure
results are optimal for future work

 Interface the C++ implementations
with Qiskit

« Make use of GCM and VQE in real
world chemistry problems, and

investigate possible use cases of GCM

over VQE
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