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Figure: Here, we construct mirror circuits with 20 reflection layers with increasing number of qubits (1-10). We then run DDD on each circuit using the three Figure: We use a thermal relaxation noise model with readout error set to 2.5% for all measurements. REM noise characterization is then applied to this noisy £ % 2000 G o
different rules, or pulsing sequences, that Mitiq offers (XX, XYXY, and YY, where names correspond to the string of Pauli operators used as digital pulses). We simulator, where we incur our one-time overhead costs. We again sweep over N_qubits, fixing the layer depth of each mirror circuit at 20, and measure 22 200 -
used a thermal relaxation noise model with readout error set to 2.5% for all measurements expectation values pre and post applying REM.
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circuit are represented as linear combinations
of noisy operations. Different implementable

circuits with increasing noise levels, extracts
an expectation value for each, and then uses
classical fitting to extrapolate to what the ideal
expectation value would be in a noiseless
environment. In Mitig’s implementation of ZNE
there are two relevant classical variables, (1)
the type of extrapolation or fitting used to find
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circuits are then sampled from the In the future, we would like to see this analysis pipeline extended to include every QEM technique
quasi-probability representation of the ideal o L’\/ . that Mitig has an implementation for, as well as integrating them with actual quantum hardware.
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Figure: Here, we construct a mirror circuit with N_qubits = 4, and 20 reflection layers. We then evaluate ZNE for 3 different classical extrapolation techniques: a Figure: Again, we construct a mirror circuit with N_qubits = 4, and 20 reflection layers. We then evaluate PEC performance as we sweep over the number of B f d . d th U t F d t d AQET f t
linear extrapolation method, a polynomial method of order 2, and exponential. We then sweep over the noise scaling parameters (each of which is a linearly circuits sampled. PEC best mitigates depolarizing noise, so we created a depolarizing noise model with single qubit instruction errors of 0.5% and 2-qubit owers 1or a VISIng’ an e uni ary und communi y an program or Suppor Ing us.
spaced array of noise values. For example ‘5’ corresponds to the array noise scaling values = [1,2,3,4,5]) instruction errors of 2.5%.
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