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. , . - . * Deep Space Network 1k (DSN): is a new /arge dataset * Parse anomaly data and generate reports using LLMs.
NASA's JPL ’has a problem: we keep launching satellites presented in this work obtained from the Deep Space * Allows critical failures to be addressed quicker by
but there isn L enough funding to hire Spacecraft Network. Contains numerical, categorical, and missing providing workers with a generated report of what
Operations Engineers to monitor the data in the Deep information.

potentially caused an anomaly to occur.

S Network (DSN) [1].
pace Network ( ) [1] ®* Can lead to increases in company auditing speed.

®* Previous research has studied using deep learning

models on time-series data to detect anomalies [2,3,4,9]. Dataset: SMAP MSL SWaT Anomalous Time-Series
* We build upon existing literature to improve the State of Number of tracks o4 2r 1 | g 10=sesocemsoeooooo_o. - EEEEEEE— LLM Output:
Total Training Length | 138,004 (24.05%) | 58,317 (44.16%) | 495,000 (52.39%) = Temperature (C) Anomaly detected at time
the Art (SotA) model on a novel dataset from JPL. Total Testing Length | 435,826 (75.95%) | 73,729 (55.84%) | 449,919 (47.61%) g Humidity (%) 35-40. Potential causes:
Total Length 573, 830 132,046 944,919 @ 5= SNR@B)_ ... f.. M. -Temperature
Number of Anomalies | 55,922 (12.83%) | 7,766 (10.53%) | 54,621 (12.14%) = - Humidity
Number of Parameters 25 5% 51 g Please check water tank
Types of Parameters Float Float Float Q. for high pressure or leaks.
Number of NANs 0 (0%) 0 (0%) 0 (0%) ; % o i oD
Dataset: WADI SMD DSN_1k Time
Number of tracks 1 28 999
* Transformer-based autoencoder architecture (TranAD+). Total Training Length | 784,571 (81.95%) | 708,405 (50%) | 3,367,256 (77.76%) * Adjust model architecture for categorical information by
_ _ o Total Testing Length | 172,801 (18.05%) | 708,420 (50%) 962, 832 (22.24%) : : Pt
° Se|f_superv|sed 2_phased adversarial training. Total Length 057. 372 1. 416, 825 1.330. 088 separating underlylng data to SpeCIallzed models.

0,977 (5.77%) | 29,444 (4.16%) | 247,247 (25.68%)

Number of Anomalies

* Base model is built from previous work (TranAD) [2].

Number of Parameters 128 38 129 (98 float, 31 byte) Multivariate Time Numerical Subset Training> Model 1
Types of Parameters Float Float Float, Byte Series Preprocessing —
Number of NANs | 3,829,522 (3.13%) 0 (0%) 43,956,130 (7.87%) Categorical Subset Tfa'n'n9> Model 2
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N na = Anomalous Inference LLM PfompF Anomalies
T N S F 0 Engineering
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o = e o e ey W o IO oy B e I [ES0) [(T=2 | [ 1
- g * TranAD+ outperforms previous SotA Anomaly Detection
& % A models on the new DSN dataset in F1 and AUC.
= el e O e Het o * Outperforms F1 on SMAP, SWaT, and SMD.
- g ®*  Qutperforms AUC on WADI and MSL.
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