Enhancing Co-Adaptive Myoelectric Interfaces with Eye Tracking
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PRIOR RESEARCH . . . . .
e Adaptive decoders improve neural interface (NI) performance’-2 OBJECTIVE: Identify relationships between user learned controllers OBJECTIVE: Adapt a myoelectric interface

. | i | | using eye gaze as training data.
e Eye movements evolve as users learn sensory-motor mappings>. and gaze during adaptive myoelectric learning. EEYEE g

CHALLENGES/OPEN QUESTIONS e Participants (N = 7) did tracking task with myoelectric interface. e Participants (N = 11) did tracking task with myoelectric interface trained
e |dentify link between NI learning and eye movement. e Eye gaze was measured during task operation. on eye gaze. User intended goal T is the gaze position.
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decoder, which limits user autonomy. e Each trial was 3-min adaptive; _Withoutcoaching . N
OUR GOALS RESULT 1: Time-domain Task Performance, Frequency-domain total 12 trials. S Block3 | Block4
e Quantify relationship between user learning and eye movement Feedforward and Feedback 4 Improved During Adaptation.
to identify biomarkers of learning. | RESULT 1: Time-domain Task Performance Improved for Both
* Adaptinterface based on eye movement biomarkers. USER Gaze-Trained and Conventional Task-Trained Decoders
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e Participants control cursor using forearm seEMG to follow a E:
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continuous moving target. For participants who learned (N = 4):

e Decoder D is adapted using gradient-based learning that Task error S Feedforward > REFERENCES:
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e In current methods' ?, intended goal T is the target. 2007 N R T7; S v
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e D isinitialized randomly and updated iteratively using 1 2 3 1 2 3
20-second batches of data. Time (mins) Time (mins) target
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