

SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory

STUDENTS: CHENG-YEN YANG, HSIANG-WEI HUANG, WENHAO CHAI, ZHONGYU JIANG

TL;DR: WE PROPOSED A MOTION-AWARE MEMORY ON TOP OF SAM2 FOR ZERO-SHOT VISUAL TRACKING!

CHALLENGES FOR VISUAL TRACKING

Case 1: Ambiguous prediction in crowded scene with similar appearance

P Consider motion during mask selection!

OVERALL FRAMEWORK: SAMURAI

MOTION-AWARE MEMORY UPDATE

Algorithm 1 Motion-Aware Memory Bank Update1: Input: Video frames V, Memory Bank \mathcal{B} , Kalman Filter State
 \mathcal{K} , Thresholds $\tau_{mask}, \tau_{obj}, \tau_{kf}$, Trajectory \mathcal{R} , Weight w_{kf} 2: for f = 0 to |V| - 1 do3: $I_{emb} \leftarrow$ MemoryAttention(ImageEncoder(V_f), \mathcal{B})4: $(m, b, s_{mask}, s_{obj}) \leftarrow$ MaskDecoder(x_{prompt}, I_{emb})5: // Predict object location using Kalman filter6: $b_{kf} \leftarrow \mathcal{K}.predict()$ 7: // Calculate KF-IoU scores8: $s_{kf} \leftarrow$ IoU(b_{kf}, b)

- 9: // Select best mask and bounding box
- $(m_s, b_s) \leftarrow \operatorname{argmax}(\alpha_{kf} \cdot s_{kf}(\mathcal{M}_i) + (1 \alpha_{kf}) \cdot s_{mask,i})$
- 11: // Update Kalman filter with selected box
- 12: $\mathcal{K}.update(b_s)$
- : // Update memory bank

14: $\mathcal{R}.append(m_s, s_{mask}[m_s], s_{obj}[m_s], s_{kf}[m_s])$ 15:// Construct memory features16: $\mathcal{B} \leftarrow [], fid \leftarrow f$ 17:while $|\mathcal{B}| < N_{mem}$ and $fid \ge 0$ do18: $(_, s_{mask}, s_{obj}, s_{kf}) \leftarrow \mathcal{R}[fid]$ 19:if $s_{mask} > \tau_{mask}$ and $s_{obj} > \tau_{obj}$ and $s_{kf} > \tau_{kf}$ then20: $\mathcal{B}.append(\mathcal{M}_{fid})$ 21:end if22: $fid \leftarrow fid - 1$ 23:end while24:end for

<u>SAM</u>-based <u>Unified and Robust zero-shot visual tracker with motion-Aware Instance-level memory</u>

EXPERIMENT RESULTS

Trackers	Source	LaSOT			LaSOT _{ext}			GOT-10k		
		AUC(%)	P _{norm} (%)	P(%)	AUC(%)	P _{norm} (%)	P(%)	AO(%)	$OP_{0.5}(\%)$	OP _{0.75} (%)
SiamRPN++	CVPR'19	49.6	56.9	49.1	34.0	41.6	39.6	51.7	61.6	32.5
$DiMP_{288}$	CVPR'20	56.3	64.1	56.0	-	-	-	61.1	71.7	49.2
$TransT_{256}$	CVPR'21	64.9	73.8	69.0	-	-	-	67.1	76.8	60.9
AutoMatch ₂₅₅	ICCV'21	58.2	67.5	59.9	-	-	-	65.2	76.6	54.3
STARK ₃₂₀	ICCV'21	67.1	76.9	72.2	-	-	-	68.8	78.1	64.1
SwinTrack-B ₃₈₄	NeurIPS'22	71.4	79.4	76.5	-	-	-	72.4	80.5	67.8
MixFormer ₂₈₈	CVPR'22	69.2	78.7	74.7	-	-	-	70.7	80.0	67.8
OSTrack ₃₈₄	ECCV'22	71.1	81.1	77.6	50.5	61.3	57.6	73.7	83.2	70.8
ARTrack-B ₂₅₆	CVPR'23	70.8	79.5	76.2	48.4	57.7	53.7	73.5	82.2	70.9
SeqTrack-B ₃₈₄	CVPR'23	71.5	81.1	77.8	50.5	61.6	57.5	74.5	84.3	71.4
$GRM-B_{256}$	CVPR'23	69.9	79.3	75.8	-	-	-	73.4	82.9	70.4
NCSiam-L	TIP'23	63.9	72.4	67.0	-	-	-	67.8	78.0	61.3
ROMTrack-B ₂₅₆	ICCV'23	69.3	78.8	75.6	47.2	53.5	52.9	72.9	82.9	70.2
TaMOs-B ₃₈₄	WACV'24	70.2	79.3	77.8	-	-	-	-	-	-
EVPTrack-B ₃₈₄	AAAI'24	72.7	82.9	80.3	53.7	65.5	61.9	76.6	86.7	73.9
ODTrack-L ₃₈₄	AAAI'24	<u>74.0</u>	84.2	82.3	53.9	65.4	61.7	78.2	87.2	77.3
HIPTrack-B ₃₈₄	CVPR'24	72.7	82.9	79.5	53.0	64.3	60.6	77.4	88.0	74.5
AQATrack-L ₃₈₄	CVPR'24	72.7	82.9	80.2	52.7	64.2	60.8	76.0	85.2	74.9
MCTrack-B ₃₈₄	TIP'24	72.2	81.6	77.7	51.1	61.8	58.8	76.5	87.1	75.4
LoRAT-L ₂₂₄	ECCV'24	74.2	<u>83.6</u>	80.9	52.8	64.7	60.0	75.7	84.9	75.0
SAMURAI-T	Ours	69.3	76.4	73.8	55.1	65.6	63.7	79.0	89.6	72.3
SAMURAI-S	Ours	70.0	77.6	75.2	<u>58.0</u>	<u>69.6</u>	<u>67.7</u>	78.8	88.7	72.9
SAMURAI-B	Ours	70.7	78.7	76.2	57.5	69.3	67.1	<u>79.6</u>	<u>90.8</u>	72.9
SAMURAI-L	Ours	74.2	82.7	80.2	61.0	73.9	72.2	81.7	92.2	<u>76.9</u>

Trackers		LaSOT		LaSOT _{ext}			
	AUC(%)	$P_{norm}(\%)$	P(%)	AUC(%)	$P_{norm}(\%)$	P(%)	
SAM2.1-T	66.70	73.70	71.22	52.25	62.03	60.30	
SAMURAI-T	69.28 (+2.58)	76.39 (+2.69)	73.78 (+2.56)	55.13 (+2.88)	65.60 (+2.57)	63.72 (+3.42)	
SAM2.1-S	66.47	73.67	71.25	56.11	67.57	65.81	
SAMURAI-S	70.04 (+3.57)	77.55 (+3.88)	75.23 (+3.98)	57.99 (+1.88)	69.60 (+2.03)	67.73 (+1.92)	
SAM2.1-B	65.97	73.54	70.96	55.51	67.17	64.55	
SAMURAI-B	70.65 (+4.68)	78.69 (+4.15)	76.21 (+5.25)	57.48 (+1.97)	69.28 (+2.11)	67.09 (+2.54)	
SAM2.1-L	68.54	76.16	73.59	58.55	71.10	68.83	
SAMURAI-L	74.23 (+5.69)	82.69 (+6.53)	80.21 (+6.62)	61.03 (+2.48)	73.86 (+2.76)	72.24 (+3.41)	

State-of-the-art on multiple benchmarks: LaSOT_{ext}, GOT-10k, VOT2020, VOT2022, TrackngNet, NFS!

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

ADVISOR: JENQ-NENG HWANG

FOR CODE, DEMO, AND MORE!