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Case 1: Ambiguous prediction in crowded scene with similar appearance              Consider motion during mask selection!

Case 2: Ambiguous prediction in occlusion resulting bad memory feature                        Motion-aware memory selection!

CHALLENGES FOR VISUAL TRACKING

OVERALL FRAMEWORK: SAMURAI
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TABLE I: Visual object tracking results on LaSOT [3], LaSOText [4], and GOT-10k [5]. The T, S, B, L represents the size
of the ViT-based backbone while the subscript is the search region. Bold represents the best while underline represents the
second.

Trackers Source LaSOT LaSOText GOT-10k

AUC(%) Pnorm(%) P(%) AUC(%) Pnorm(%) P(%) AO(%) OP0.5(%) OP0.75(%)

SiamRPN++ CVPR’19 49.6 56.9 49.1 34.0 41.6 39.6 51.7 61.6 32.5
DiMP288 CVPR’20 56.3 64.1 56.0 - - - 61.1 71.7 49.2
TransT256 CVPR’21 64.9 73.8 69.0 - - - 67.1 76.8 60.9
AutoMatch255 ICCV’21 58.2 67.5 59.9 - - - 65.2 76.6 54.3
STARK320 ICCV’21 67.1 76.9 72.2 - - - 68.8 78.1 64.1
SwinTrack-B384 NeurIPS’22 71.4 79.4 76.5 - - - 72.4 80.5 67.8
MixFormer288 CVPR’22 69.2 78.7 74.7 - - - 70.7 80.0 67.8
OSTrack384 ECCV’22 71.1 81.1 77.6 50.5 61.3 57.6 73.7 83.2 70.8
ARTrack-B256 CVPR’23 70.8 79.5 76.2 48.4 57.7 53.7 73.5 82.2 70.9
SeqTrack-B384 CVPR’23 71.5 81.1 77.8 50.5 61.6 57.5 74.5 84.3 71.4
GRM-B256 CVPR’23 69.9 79.3 75.8 - - - 73.4 82.9 70.4
NCSiam-L TIP’23 63.9 72.4 67.0 - - - 67.8 78.0 61.3
ROMTrack-B256 ICCV’23 69.3 78.8 75.6 47.2 53.5 52.9 72.9 82.9 70.2
TaMOs-B384 WACV’24 70.2 79.3 77.8 - - - - - -
EVPTrack-B384 AAAI’24 72.7 82.9 80.3 53.7 65.5 61.9 76.6 86.7 73.9
ODTrack-L384 AAAI’24 74.0 84.2 82.3 53.9 65.4 61.7 78.2 87.2 77.3
HIPTrack-B384 CVPR’24 72.7 82.9 79.5 53.0 64.3 60.6 77.4 88.0 74.5
AQATrack-L384 CVPR’24 72.7 82.9 80.2 52.7 64.2 60.8 76.0 85.2 74.9
MCTrack-B384 TIP’24 72.2 81.6 77.7 51.1 61.8 58.8 76.5 87.1 75.4
LoRAT-L224 ECCV’24 74.2 83.6 80.9 52.8 64.7 60.0 75.7 84.9 75.0

SAMURAI-T Ours 69.3 76.4 73.8 55.1 65.6 63.7 79.0 89.6 72.3
SAMURAI-S Ours 70.0 77.6 75.2 58.0 69.6 67.7 78.8 88.7 72.9
SAMURAI-B Ours 70.7 78.7 76.2 57.5 69.3 67.1 79.6 90.8 72.9
SAMURAI-L Ours 74.2 82.7 80.2 61.0 73.9 72.2 81.7 92.2 76.9

The motion-aware memory bank Bt is subsequently passed
through the memory attention layer and then directed to mask
decoder Dmask to perform mask decoding at the current
timestamp. Note that we follow the Nmem = 7 as the SAM 2
is trained under these specific memory settings. We present our
motion-aware memory update as in Algorithm 1, we utilize
and save the motion, object, and mask affinity scores at each
timestamp to form the memory bank as we iterate back from
the current timestamp until the memory bank selected up to
Nmem features. Finally, a temporal positional encoding will
be concatenated to the memory based on the order of how far
away is the memory from the current frame. The rest of the
memory attention mechanism is kept the same with original
implementation.

By combining motion modeling with our proposed motion-
aware memory selection, we can enhance SAM2’s tracking
performance in challenging real-world applications without
sacrificing efficiency.

V. EXPERIMENTS

A. Benchmarks

a) LaSOT [3] and LaSOText [4]: LaSOT is a visual
object tracking dataset with 1,400 videos spanning 70 cat-
egories, averaging 2,500 frames per sequence. It comprises
1,120 training and 280 testing sequences, with 16 training and
4 testing videos per category. LaSOText extends LaSOT with
150 videos across 15 new categories, emphasizing occlusions
and small object variations. Models trained on LaSOT are
evaluated directly on LaSOText per standard protocol.

b) GOT-10k [5]: GOT-10k comprises over 10,000 video
segments of real-world moving objects, spanning more than
560 object classes and 80+ motion patterns. It follows a one-
shot evaluation protocol, ensuring that test objects are unseen
during training, promoting generalization-focused benchmark-
ing for object tracking models.

c) TrackingNet [6]: TrackingNet is a large-scale tracking
dataset that covers a wide selection of object classes in broad
and diverse contexts in the wild. It has a total of 30,643 videos
split into 30,132 training videos and 511 testing videos.

d) NFS [41]: Need-for-speed consists of 100 videos with
a total of 380k frames captured with higher frame rate (240
FPS) cameras. We use the 30 FPS version of the data with
artificial motion blur following other VOT works.

e) OTB100 [42]: OTB100 is a visual tracking bench-
marks that annotated sequences with attribute tags. It contains
100 sequences with an average length of 590 frames.

f) VOT Challenge Datasets [7], [8]: VOT2020 com-
prises 60 challenging sequences, with trackers evaluated using
an anchor-based protocol to maximize sequence utilization.
Performance is assessed based on accuracy and robustness,
summarized by the expected average overlap (EAO). VOT2022
is a follow-up to VOT2020, with 62 sequences, where simpler
cases are removed, and more challenging ones are added.

g) SA-V [9]: SA-V dataset is a large-scale benchmark
for promptable video segmentation, featuring 50.9K video
clips and 35.5M high-quality masks across 642.6K masklets.
It includes small, occluded, and reappearing objects, with data
split into training, validation (293 masklets), and testing (278
masklets) sets for model development and evaluation.
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Fig. 2: The overview of our SAMURAI visual object tracker.

where x, y represents the center coordinate of the bounding
box, w and h denote its width and height, respectively,
and their corresponding velocities are represented by the dot
notation. For each mask Mi, the corresponding bounding box
di is derived by computing the minimum and maximum x and
y coordinates of the mask’s non-zero pixels. The Kalman filter
operates in a predict-correct cycle, where the state prediction
x̂t+1|t is given by:

x̂t+1|t = F x̂t|t, skf = IoU(x̂t+1|t,M) (5)

the KF-IoU score skf is then computed by calculating the
Intersection over Union (IoU) between the predicted masks
M and the bounding box derived from the Kalman filter’s
predicted state. We then select the mask that maximizes a
weighted sum of the KF-IoU score and the original affinity
score:

M⇤ = argmax
Mi

(↵kf · skf (Mi) + (1� ↵kf ) · smask,i. (6)

Finally, the update is performed using:

x̂t|t = x̂t|t�1 +Kt(zt �Hx̂t|t�1) (7)

where zt is the measurement, the bounding box derived from
the mask we selected, used to update. F is the linear state
transition matrix, Kn is the Kalman gain, and H is the
observation matrix. Furthermore, to ensure the robustness of
the motion modeling after the targeted object reappears or
the poor mask qualities for a certain period of time, we also
maintain a stable motion state where we take consideration of
the motion module if and only if the tracked object is being
successfully updated in the past Tsuccess frames.

B. Motion-Aware Memory Selection

The original SAM 2 prepares the conditioned visual feature
of the current frame based on selecting Nmem from the
previous frames. The original implementation simply selects
the Nmem most recent frames based on the qualities of the
target. However, this approach has the weakness of not being

Algorithm 1 Motion-Aware Memory Bank Update
1: Input: Video frames V , Memory Bank B, Kalman Filter State

K, Thresholds ⌧mask, ⌧obj , ⌧kf , Trajectory R, Weight wkf

2: for f = 0 to |V |� 1 do
3: Iemb  MemoryAttention(ImageEncoder(Vf ),B)
4: (m, b, smask, sobj) MaskDecoder(xprompt, Iemb)
5: // Predict object location using Kalman filter
6: bkf  K.predict()
7: // Calculate KF-IoU scores
8: skf  IoU(bkf , b)
9: // Select best mask and bounding box

10: (ms, bs) argmax(↵kf · skf (Mi) + (1� ↵kf ) · smask,i)
11: // Update Kalman filter with selected box
12: K.update(bs)
13: // Update memory bank
14: R.append(ms, smask[ms], sobj [ms], skf [ms])
15: // Construct memory features
16: B  [], fid f
17: while |B| < Nmem and fid � 0 do
18: ( , smask, sobj , skf ) R[fid]
19: if smask > ⌧mask and sobj > ⌧obj and skf > ⌧kf then
20: B.append(Mfid)
21: end if
22: fid fid� 1
23: end while
24: end for

able to handle long-term occlusion or deformation, which is
common in visual object tracking tasks.

To construct an effective memory bank of object cues con-
sidering motion, we employ a selective approach for choosing
frames from previous time steps based on three scoring: the
mask affinity score, object occurrence score, and motion score.
We select the frame as an ideal candidate for memory if and
only if all three scores meet their corresponding thresholds
(e.g., ⌧mask, ⌧obj , ⌧kf ). We iterate back in time from the
current frame and repeat the verification. We select Nmem

memories based on the above scoring function and obtain a
motion-aware memory bank Bt:

Bt = {mi|f(smask, sobj , skf ) = 1, t�Nmax  i < t} (8)

where Nmax is the maximum number of frames to look back.

MOTION-AWARE MEMORY UPDATE

TL;DR: WE PROPOSED A MOTION-AWARE MEMORY ON TOP OF SAM2 FOR ZERO-SHOT VISUAL TRACKING! 

EXPERIMENT RESULTS

SAM-based Unified and Robust zero-shot visual tracker with motion-Aware Instance-level memory 

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE VII: Visual object tracking results of the proposed SAMURAI compare to the baseline SAM-based tracking method.

Trackers LaSOT LaSOText

AUC(%) Pnorm(%) P(%) AUC(%) Pnorm(%) P(%)

SAM2.1-T 66.70 73.70 71.22 52.25 62.03 60.30
SAMURAI-T 69.28 (+2.58) 76.39 (+2.69) 73.78 (+2.56) 55.13 (+2.88) 65.60 (+2.57) 63.72 (+3.42)
SAM2.1-S 66.47 73.67 71.25 56.11 67.57 65.81
SAMURAI-S 70.04 (+3.57) 77.55 (+3.88) 75.23 (+3.98) 57.99 (+1.88) 69.60 (+2.03) 67.73 (+1.92)
SAM2.1-B 65.97 73.54 70.96 55.51 67.17 64.55
SAMURAI-B 70.65 (+4.68) 78.69 (+4.15) 76.21 (+5.25) 57.48 (+1.97) 69.28 (+2.11) 67.09 (+2.54)
SAM2.1-L 68.54 76.16 73.59 58.55 71.10 68.83
SAMURAI-L 74.23 (+5.69) 82.69 (+6.53) 80.21 (+6.62) 61.03 (+2.48) 73.86 (+2.76) 72.24 (+3.41)

TABLE VIII: Attribute-wise AUC(%) results for LaSOT and LaSOText. ARC: Aspect Ratio Change, BC: Background Clutter, CM: Camera
Motion, DEF: Deformation, FM: Fast Motion, FOC: Full Occlusion, IV: Illumination Variation, LR: Low Resolution, MB: Motion Blur, OV:
Out-of-View, POC: Partial Occlusion, ROT: Rotation, SV: Scale Variation, VC: View Change.

Trackers LaSOT

ARC BC CM DEF FM FOC IV LR MB OV POC ROT SV VC

SAM2.1-B 64.7 62.8 67.7 67.1 56.1 57.6 63.0 55.4 67.1 56.2 64.6 62.8 65.5 59.8
SAMURAI-B 69.6 68.0 73.1 72.0 62.5 63.0 69.6 63.2 70.2 64.5 69.1 68.0 70.3 64.1
% Gain +7.6% +8.3% +8.0% +7.3% +11.4% +9.4% +10.5% +14.1% +4.6% +14.8% +7.0% +8.3% +7.3% +7.2%

SAM2.1-L 67.3 64.3 69.4 70.8 58.4 59.3 63.9 59.7 67.8 61.9 68.0 67.2 68.1 61.1
SAMURAI-L 73.2 69.8 77.4 75.5 64.3 66.9 73.4 67.7 74.4 70.1 72.9 72.7 73.9 71.7
% Gain +8.9% +8.6% +11.5% +6.6% +10.1% +12.8% +14.9% +13.4% +9.7% +13.2% +7.2% +8.2% +8.5% +17.3%

Trackers LaSOText

ARC BC CM DEF FM FOC IV LR MB OV POC ROT SV VC

SAM2.1-B 53.4 49.3 58.6 75.4 42.1 42.5 69.5 45.3 42.6 46.1 56.3 61.6 54.4 57.1
SAMURAI-B 55.1 52.3 73.2 75.8 45.9 46.5 70.4 48.0 43.4 49.2 57.3 59.6 56.6 61.1
% Gain +3.2% +6.1% +24.9% +0.5% +9.0% +9.4% +1.3% +6.0% +1.9% +6.7% +1.8% -3.3% +4.0% +7.0%

SAM2.1-L 56.6 53.2 62.8 75.6 46.1 47.6 71.4 48.8 47.1 50.9 60.0 63.2 57.7 61.9
SAMURAI-L 59.1 55.1 77.0 77.9 52.3 51.8 69.1 53.0 49.9 53.3 60.6 62.7 60.2 67.9
% Gain +4.4% +3.6% +22.6% +3.0% +13.5% +8.8% -3.2% +8.6% +5.9% +4.3% +0.1% -0.8% +4.3% +9.7%

c) Baseline Comparison: To demonstrate the effective-
ness of the proposed motion modeling and motion-aware
memory selection mechanism in SAMURAI, we conduct a
detailed apple-to-apple comparison with SAM 2 [9] across all
backbone variations on LaSOT and LaSOText. The baseline
SAM 2 employs original memory selection and predicts the
mask with the highest IoU score. As shown in Table VII, our
method consistently outperforms the baseline by a significant
margin across all three metrics, highlighting its robustness and
strong generalization across different model configurations.
These results further validate that our motion-aware framework
not only enhances short-term tracking accuracy but also im-
proves long-term object association, making it a more reliable
and scalable solution for real-world tracking scenarios.

d) Attribute-Wise Performance Analysis: We analyze
the LaSOT and LaSOText datasets based on the 14 at-
tributes [3], [4]. In Table VIII, SAMURAI shows consistent
success in improving upon the baseline across almost every at-
tribute in both datasets. With motion scoring, the performance
gains on attributes like CM (Camera Motion) and FM (Fast
Motion) are self-explainable, with SAMURAI-L achieving a
22.6% gain on CM and 13.5% on FM in LaSOText. Further-
more, occlusion-related attributes like FOC (Full Occlusion)
and POC (Partial Occlusion) also greatly benefit from the
motion-aware instance-level memory selection. Notably, one
of the stronger improvement are observed in VC (Viewpoint
Change), where SAMURAI-L achieves a +17.3% gain on
LaSOT, demonstrating its ability to also handle viewpoint
variations in long-term tracking scenarios.

Fig. 3: Average success rate (%) across all sequences as the
time propagate on LaSOT and LaSOText.

e) Error Propagation: We present the average suc-
cess rate at each exact time frame for the baseline models
and SAMURAI on LaSOT and LaSOText. In visual object
tracking, tracking failures can occur due to occlusions or
identity switches, particularly in crowded scenarios, where
the target object may be momentarily indistinguishable from
others. Figure 3 illustrates the effects of error propagation and
demonstrates how our proposed method can mitigate some of
these issues, improving tracking performance over time.
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Fig. 4: Success plots for 14 different attributes and the overall precision plots on LaSOText.

f) Runtime Analysis.: The incorporation of the motion
modeling and an enhanced memory selection method into
our tracking framework introduces minimal computational
overhead, and the runtime measurements conducted on one
NVIDIA RTX 4090 GPU remain the same with the original
SAM 2.

D. Qualitative Results

Qualitative comparison between SAMURAI and other
methods [9], [52], [55] are shown in Figure 5. SAMU-
RAI demonstrates superior visual object tracking results in
scenes where multiple objects with similar appearances are
present in the video. The short-term occlusions in these
examples make it challenging for existing VOT methods to
predict or localize the same object consistently over time. Fur-
thermore, the comparison between SAMURAI and the original
baseline with visualized masks showcases the improvement

gained by adding the motion modeling and memory selection
modules, the predicted masks are not always a reliable source
to serve as memory therefore having a systematic way of
deciding which to trust is valuable. These enhancements
benefit the existing framework by providing better guidance
for visual tracking without the need to retrain the model or
fine-tune it.

E. Discussion

While SAMURAI demonstrates strong performance in
single-object visual tracking, extending it to multi-object
tracking (MOT) remains a challenging problem. The current
SAM-based models, including SAM2 and SAMURAI, do
not explicitly account for multiple instances, often leading
to many-to-one confusion when tracking objects in dense
scenes. This limitation arises from the lack of instance associ-
ation mechanisms, making it difficult to differentiate between
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TABLE VII: Visual object tracking results of the proposed SAMURAI compare to the baseline SAM-based tracking method.

Trackers LaSOT LaSOText

AUC(%) Pnorm(%) P(%) AUC(%) Pnorm(%) P(%)

SAM2.1-T 66.70 73.70 71.22 52.25 62.03 60.30
SAMURAI-T 69.28 (+2.58) 76.39 (+2.69) 73.78 (+2.56) 55.13 (+2.88) 65.60 (+2.57) 63.72 (+3.42)
SAM2.1-S 66.47 73.67 71.25 56.11 67.57 65.81
SAMURAI-S 70.04 (+3.57) 77.55 (+3.88) 75.23 (+3.98) 57.99 (+1.88) 69.60 (+2.03) 67.73 (+1.92)
SAM2.1-B 65.97 73.54 70.96 55.51 67.17 64.55
SAMURAI-B 70.65 (+4.68) 78.69 (+4.15) 76.21 (+5.25) 57.48 (+1.97) 69.28 (+2.11) 67.09 (+2.54)
SAM2.1-L 68.54 76.16 73.59 58.55 71.10 68.83
SAMURAI-L 74.23 (+5.69) 82.69 (+6.53) 80.21 (+6.62) 61.03 (+2.48) 73.86 (+2.76) 72.24 (+3.41)

TABLE VIII: Attribute-wise AUC(%) results for LaSOT and LaSOText. ARC: Aspect Ratio Change, BC: Background Clutter, CM: Camera
Motion, DEF: Deformation, FM: Fast Motion, FOC: Full Occlusion, IV: Illumination Variation, LR: Low Resolution, MB: Motion Blur, OV:
Out-of-View, POC: Partial Occlusion, ROT: Rotation, SV: Scale Variation, VC: View Change.

Trackers LaSOT

ARC BC CM DEF FM FOC IV LR MB OV POC ROT SV VC

SAM2.1-B 64.7 62.8 67.7 67.1 56.1 57.6 63.0 55.4 67.1 56.2 64.6 62.8 65.5 59.8
SAMURAI-B 69.6 68.0 73.1 72.0 62.5 63.0 69.6 63.2 70.2 64.5 69.1 68.0 70.3 64.1
% Gain +7.6% +8.3% +8.0% +7.3% +11.4% +9.4% +10.5% +14.1% +4.6% +14.8% +7.0% +8.3% +7.3% +7.2%

SAM2.1-L 67.3 64.3 69.4 70.8 58.4 59.3 63.9 59.7 67.8 61.9 68.0 67.2 68.1 61.1
SAMURAI-L 73.2 69.8 77.4 75.5 64.3 66.9 73.4 67.7 74.4 70.1 72.9 72.7 73.9 71.7
% Gain +8.9% +8.6% +11.5% +6.6% +10.1% +12.8% +14.9% +13.4% +9.7% +13.2% +7.2% +8.2% +8.5% +17.3%

Trackers LaSOText

ARC BC CM DEF FM FOC IV LR MB OV POC ROT SV VC

SAM2.1-B 53.4 49.3 58.6 75.4 42.1 42.5 69.5 45.3 42.6 46.1 56.3 61.6 54.4 57.1
SAMURAI-B 55.1 52.3 73.2 75.8 45.9 46.5 70.4 48.0 43.4 49.2 57.3 59.6 56.6 61.1
% Gain +3.2% +6.1% +24.9% +0.5% +9.0% +9.4% +1.3% +6.0% +1.9% +6.7% +1.8% -3.3% +4.0% +7.0%

SAM2.1-L 56.6 53.2 62.8 75.6 46.1 47.6 71.4 48.8 47.1 50.9 60.0 63.2 57.7 61.9
SAMURAI-L 59.1 55.1 77.0 77.9 52.3 51.8 69.1 53.0 49.9 53.3 60.6 62.7 60.2 67.9
% Gain +4.4% +3.6% +22.6% +3.0% +13.5% +8.8% -3.2% +8.6% +5.9% +4.3% +0.1% -0.8% +4.3% +9.7%

c) Baseline Comparison: To demonstrate the effective-
ness of the proposed motion modeling and motion-aware
memory selection mechanism in SAMURAI, we conduct a
detailed apple-to-apple comparison with SAM 2 [9] across all
backbone variations on LaSOT and LaSOText. The baseline
SAM 2 employs original memory selection and predicts the
mask with the highest IoU score. As shown in Table VII, our
method consistently outperforms the baseline by a significant
margin across all three metrics, highlighting its robustness and
strong generalization across different model configurations.
These results further validate that our motion-aware framework
not only enhances short-term tracking accuracy but also im-
proves long-term object association, making it a more reliable
and scalable solution for real-world tracking scenarios.

d) Attribute-Wise Performance Analysis: We analyze
the LaSOT and LaSOText datasets based on the 14 at-
tributes [3], [4]. In Table VIII, SAMURAI shows consistent
success in improving upon the baseline across almost every at-
tribute in both datasets. With motion scoring, the performance
gains on attributes like CM (Camera Motion) and FM (Fast
Motion) are self-explainable, with SAMURAI-L achieving a
22.6% gain on CM and 13.5% on FM in LaSOText. Further-
more, occlusion-related attributes like FOC (Full Occlusion)
and POC (Partial Occlusion) also greatly benefit from the
motion-aware instance-level memory selection. Notably, one
of the stronger improvement are observed in VC (Viewpoint
Change), where SAMURAI-L achieves a +17.3% gain on
LaSOT, demonstrating its ability to also handle viewpoint
variations in long-term tracking scenarios.

Fig. 3: Average success rate (%) across all sequences as the
time propagate on LaSOT and LaSOText.

e) Error Propagation: We present the average suc-
cess rate at each exact time frame for the baseline models
and SAMURAI on LaSOT and LaSOText. In visual object
tracking, tracking failures can occur due to occlusions or
identity switches, particularly in crowded scenarios, where
the target object may be momentarily indistinguishable from
others. Figure 3 illustrates the effects of error propagation and
demonstrates how our proposed method can mitigate some of
these issues, improving tracking performance over time.
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