

Rajeev B. Botadra¹, ChiJui Chen⁵, Leo Scholl¹, Trung Le¹, Hao Fang¹, Ryan Canfield², Amy Orsborn¹, Eli Shlizerman³, Shih-Chieh Hsu⁴, Scott Hauck¹

Stimulating the Brian

Occurs over an order of milliseconds

Need a system that operates within latency constraint to effectively target brain regions

Motivations

Creating closed-loop Brain-Computer Interfaces (BCIs) for Prosthetics

Studying neuron circuits and their contributions to behavior for Neurotherapy

NHPs are ideal candidates of study for their physiological similarities to humans

Closed-loop Brain Stimulation in NHPs Using Hardware Accelerated Machine Learning

Decoding Neural Activity

LFADS – a Variation Autoencoder – models firing activity in brain regions

Decoded brain states inform the stimulation pattern to inhibit neurons and observe the response

System Design

The existing experimental apparatus was modified to integrate the FPGA and build an online closed-loop system

Latency Constraint & FPGAs

Higher firing activity during stimulation can constrain inference latencies to <20ms (1/F)

	Model No.	Inference Latency (Batch Size of 1)
U	Intel Core i7	30.24 ms
٧	Nvidia RTX A4000	28.80 ms
GA	Xilinx Alevo U55C	0.65 ms

Modern CPUs and GPUs fail to meet this constraints on sequential architectures, so we look to FPGAs

Decoder Accuracy

The pre-trained LFADS model weights were quantized with QAT

LFADS Performance: Hand-Reach Out Task		
Bit Width	Test Set R ² Score	
32 bit Floating Point	0.91303	
8 bit	0.80195	

LFADS Kernel resource utilization on U55C

Resource Usage on U55C (8-bit LFADS)		
Resource	Utilization	
LUTs	14.51%	
Registers	9.28%	
BRAM	14.53%	
DSPs	24.27%	

Future Works

Test and deploy additional model architectures (NDT, MRAE, modified LFADS)

Leverage closed-loop capability in experiment design

Investigating motion pre-planning through the hand-reach-out task

References

[1] Nan Qiao, et al. "Update on Nonhuman Primate Models of Brain Disease and Related Research Tools." MDPI Biomedicines, 2023.

[2] Xiaohan Liu, et al. "Sleep Spindles as a Driver of Low Latency, Low Power ML in HLS4ML & TinyML." University of Washington, 2023.