FlowRing: Integrating Microgestures and Surface Interaction for Seamless XR Input

Ishan Chatterjee*, Jiexin Ding*, Anandghan Waghmare*, Joseph Breda, Yuquan Deng, Bo Liu, Yuntao Wang, Shwetak Patel

Motivation

As Extended Reality (XR) advances, a device has the potential to be used across contexts from immersive productivity at a desk to on-the-go, public scenarios.

Current input devices lack this necessary versatility. We introduce FlowRing, a novel ring-form factor device designed to bridge the gap between the high-throughput, ergonomic input of stationary devices and the **subtle**, **portable** control needed for mobile XR applications. FlowRing supports a dual-mode interaction paradigm: on-the-go input is facilitated by **five** subtle microgestures, while richer, higher-throughput interactions are enabled through **2D continuous** input and tapping on surfaces, akin to a mouse.

Prototype

FlowRing consists of three main sensing components: an optical flow sensor, a contact microphone, and a 6-DOF IMU.

Method

A gating classifier rejects false positives from daily tasks and determines if the user performed a gesture or is holding their hand over 4 Surface Detection a surface. If it is a gesture, the discrete microgesture classifier then determines the type of gesture. If it is a mouse-like action, the gating model can then engage a continuous 2D on-surface tracking.

Interpolation

Continuous 2D On-Surface Tracking

We attempt to emulate the feel of a trackpad by combining both heuristic-based and learned methods.

Discrete Microgesture Classification Audio Data Sliding Flow Data Interpolation

OUTPUT Gesture

Model Architecture Data Preprocessing We detect five quick gestures by a neural network consisting of a 3-layer CNN and an LSTM. To improve the accuracy of detection, we fused data from a contact microphone, an optical flow sensor and a 6-DOF IMU.

nseq*6 ∕

FlowRing achieved 93.6% microgesture recognition accuracy across sessions and 85.2% across unseen users, rising to 90.1% with just four gesture set examples from a new user.

Participants felt tracking was quick and intuitive on desk and pants in 2D Fitts'-style evaluation.

Applications

IMU Data

As users leverage a given computing device in different scenarios, their posture may change with use. The UI will adapt to users' posture.

Cross-UI Affordance Control

N = 7

connected

N = 128

Within an application or digital environments, multiple controls can be mapped to multiple surfaces based on their affordances.

Tabletop

Fingertip

Palm

commonly interact with multiple devices concurrently. Different devices can be associated with interactions on different surfaces.

Cross-Device

Control

Users now

