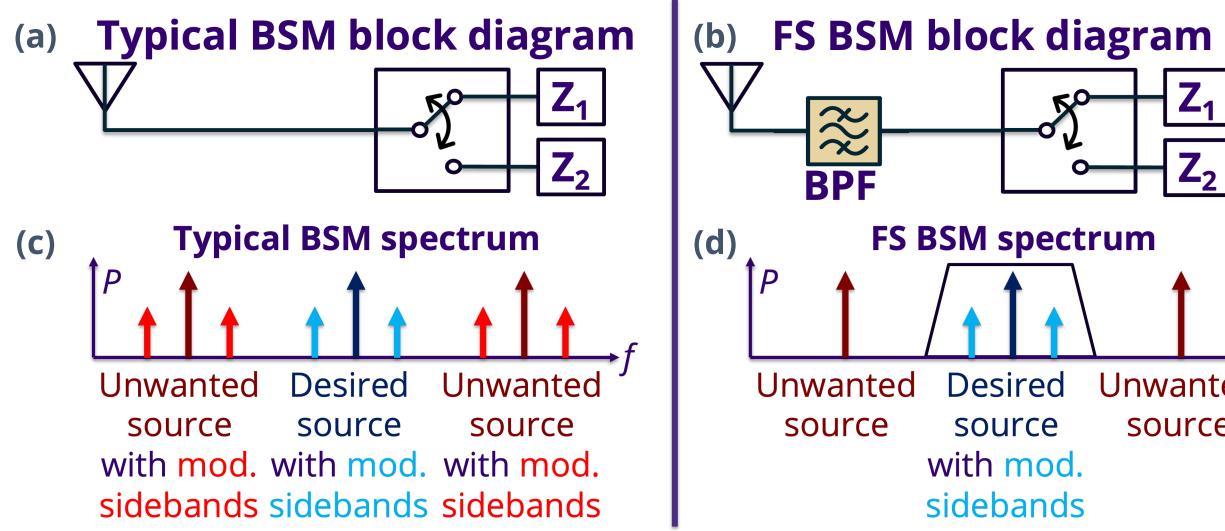
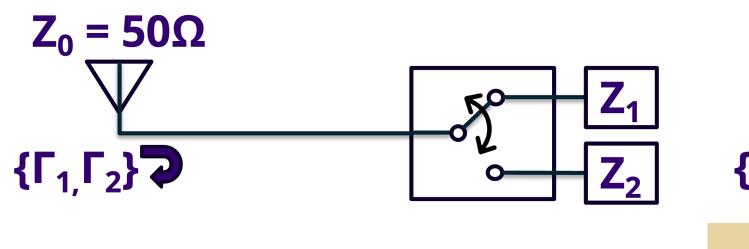


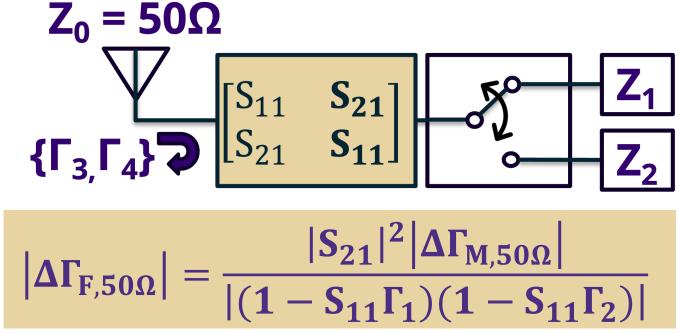
A 2.4 GHz FREQUENCY SELECTIVE BACKSCATTER MODULATOR FOR BLUETOOTH AND WI-FI BACKSCATTER

STUDENT: KEVIN HO

Background and Motivation

- Backscatter devices used in many Internet of Things (IoT) applications¹⁻⁴
- Adoption of ultra-low power backscatter modulators (BSMs) has potential to dramatically reduce creation of hazardous battery waste
- **Open problem**: a single BSM scatters energy from all nearby sources in the environment \rightarrow leads to spectral pollution and potential for interference with other nearby communication links
- **Our approach**: add in-line band-pass filter (BPF) to create a **frequency selective (FS) BSM**, which preferentially modulates signals within BPF's passband, regardless of antenna's bandwidth (BW)
- In Bluetooth (BT) or Wi-Fi context, our approach could allow backscatter within only the 2.4 GHz ISM band, or ideally within 20 MHz bandwidth of a single Wi-Fi channel

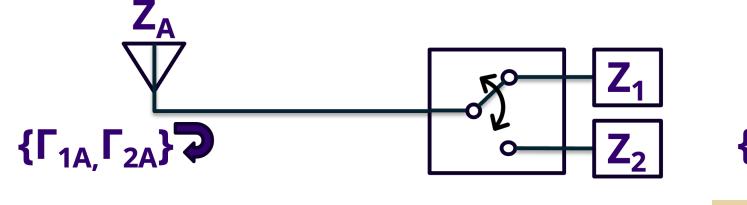




Fig. 1: Block diagram of (a) a typical BSM and (b) the proposed FS BSM. Spectrum of (c) a typical BSM, including unwanted backscatter modulation of out-of-band carriers, and (d) the proposed FS BSM. The addition of a BPF ensures scattering from carriers in the desired band.

Engineering Frequency Selectivity

The frequency-dependent **differential reflection coefficient**, $|\Delta\Gamma|$, is used to characterize amount of modulated backscatter. $|\Delta\Gamma|$ ranges from 0 to 2 for minimum to maximum backscatter and is computed as the difference between complex-valued reflection coefficients.

 $\left| \Delta \Gamma_{\mathrm{M},50\Omega} \right| = \left| \Gamma_{1} - \Gamma_{2} \right|$


- Adding reciprocal 2-port network yields a new, **filtered** $|\Delta\Gamma_{50\Omega}|$, which is a scaled version of the original
- An ideal BPF enables **frequency selective** $|\Delta\Gamma_{F,50\Omega}|$. \rightarrow Stopband: $|S_{11}| = 1$ and $|S_{21}| = 0 \rightarrow |\Delta\Gamma_{F,50\Omega}| = 0$. →**Passband**: $|S_{11}| = 0$ and $|S_{21}| = 1 \rightarrow |\Delta\Gamma_{F,50\Omega}| = |\Delta\Gamma_{M,50\Omega}|$

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Unwanted source

Practical Considerations

$\left| \Delta \Gamma_{\mathrm{M,A}} \right| = \left| \Gamma_{\mathrm{1A}} - \Gamma_{\mathrm{2A}} \right|$

- In practice, an antenna having complex impedance $Z_A \neq 50\Omega$ is used • After converting each 50 Ω -ref'd Γ_n into its respective impedance parameter, Z_n, the corresponding reflection coefficient seen by the antenna is found as: $\Gamma_{nA} = \frac{Z_n - Z_A^*}{Z_n + Z_A}$, $n \in \{1, 2, 3, 4\}$

Crucially, an ideal BPF can also **enable frequency selective** $|\Delta\Gamma_{F,A}|$

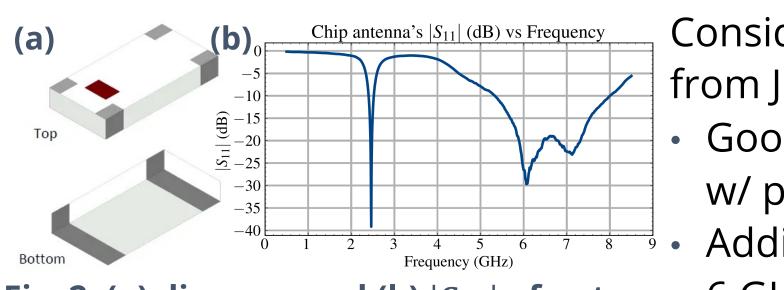
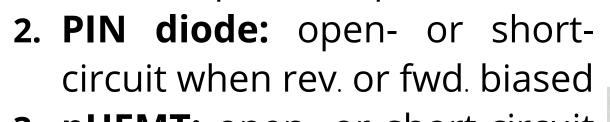
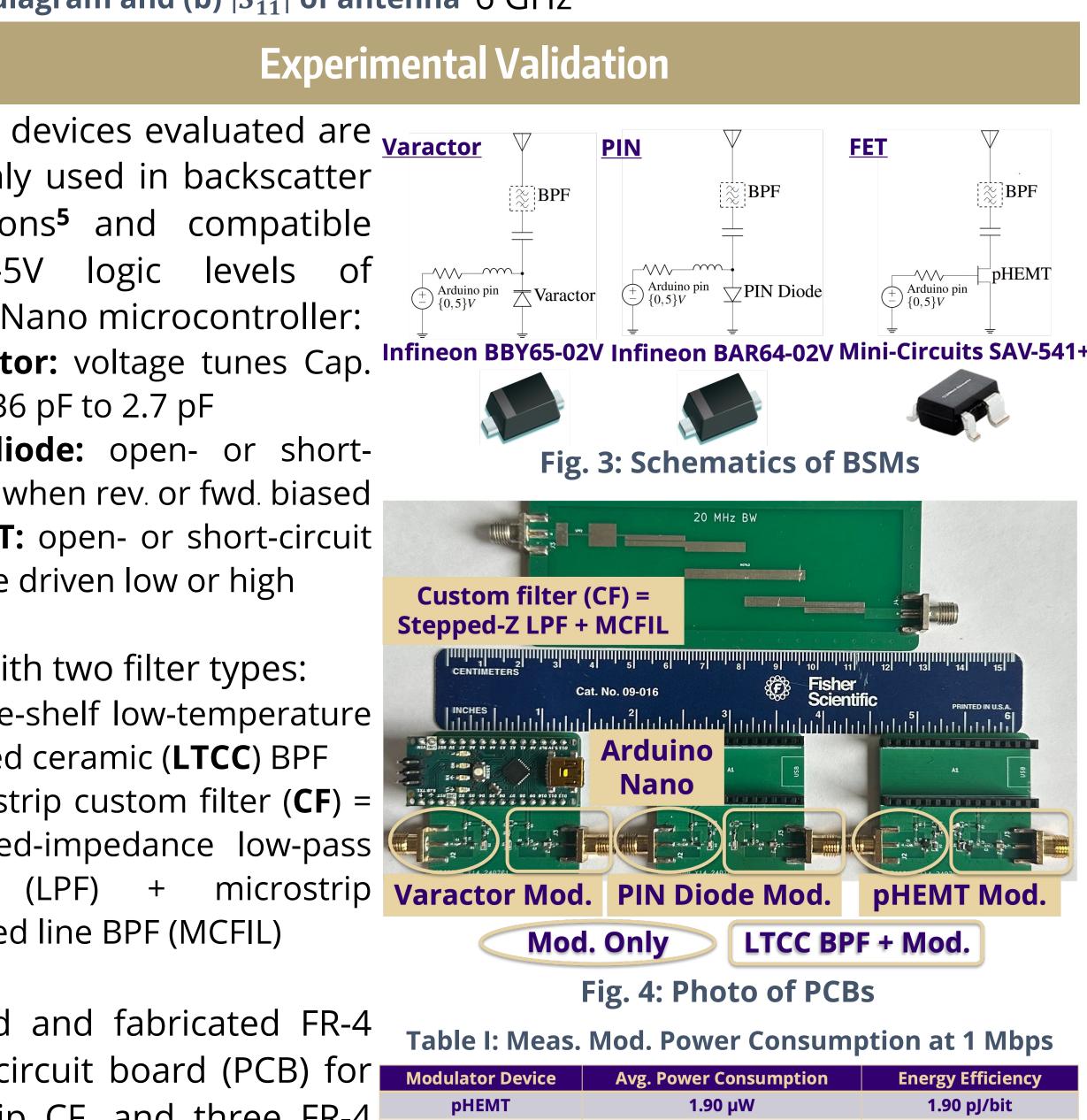



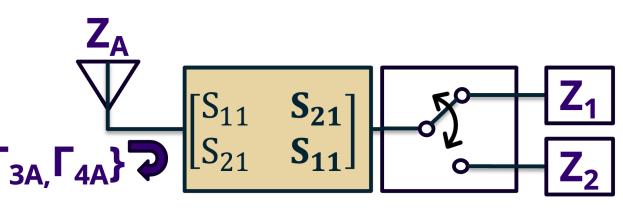
Fig. 2: (a) diagram and (b) $|S_{11}|$ of antenna 6 GHz

All three devices evaluated are Varactor commonly used in backscatter applications⁵ and compatible with 0-5V logic levels of Arduino Nano microcontroller:

1. Varactor: voltage tunes Cap. Infineon from 36 pF to 2.7 pF



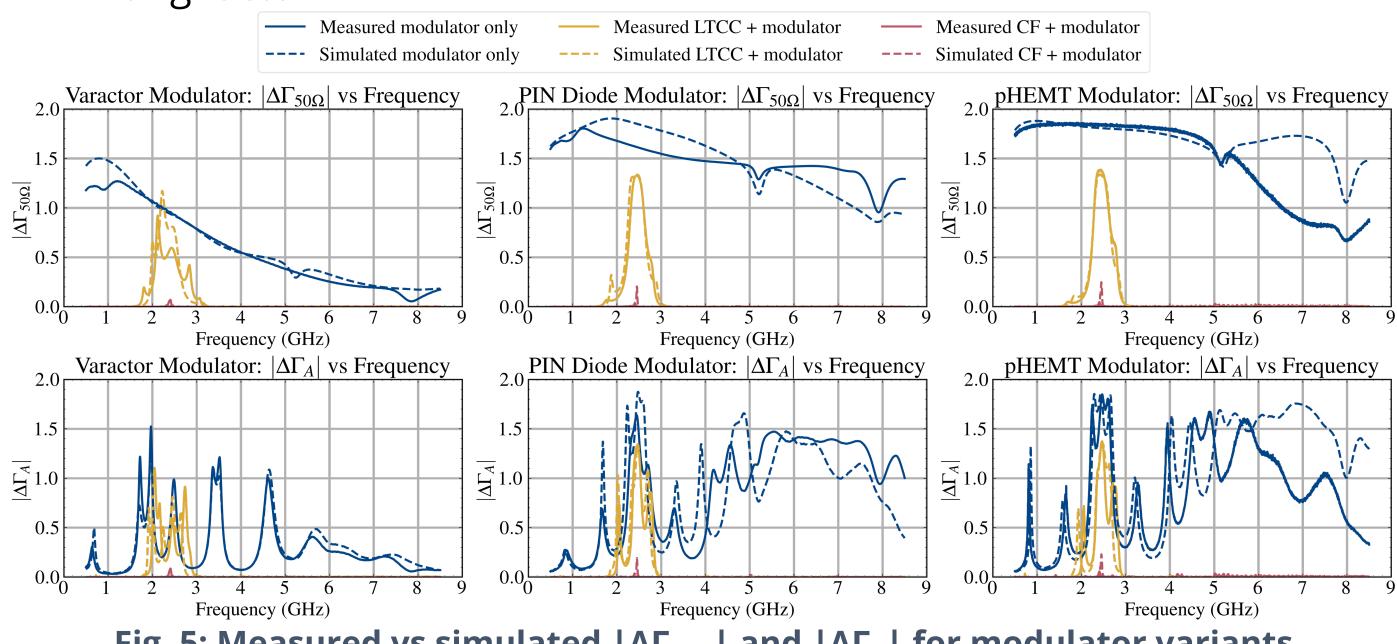
3. pHEMT: open- or short-circuit as gate driven low or high


Paired with two filter types:

- 1. Off-the-shelf low-temperature co-fired ceramic (**LTCC**) BPF
- 2. Microstrip custom filter (**CF**) = Stepped-impedance low-pass filter coupled line BPF (MCFIL)

Designed and fabricated FR-4 printed circuit board (PCB) for Modulator Device microstrip CF, and three FR-4 PCBs for the modulators.

Varactor **PIN Diode**



- $\left|\Delta\Gamma_{\mathrm{F,A}}\right| = |\mathbf{S}_{21}|^2 \left|\frac{f(\cdot)}{g(\cdot)}\right| \left|\Delta\Gamma_{\mathrm{M,A}}\right|$
- Considered generic chip antenna from Johanson Inc. for $|\Delta\Gamma_A|$ Good for BT and Wi-Fi applications w/ primary 2.4–2.5 GHz passband Additional passbands around 5 and

46.25 pJ/bit **46.25 μW** 22.30 nJ/bit 22.30 mW

Measured vs Simulated Results

- limiting factor

	Modulator Only			LTCC BPF + Modulator			CF + Modulator		
Metric	Var.	PIN	рНЕМТ	Var.	PIN	рНЕМТ	Var.	PIN	рНЕМТ
Peak $ \Delta\Gamma_{50\Omega} $, 2400-2483 MHz	0.960	1.622	1.849	0.596	1.328	1.385	0.069	0.036	0.047
$ \Delta\Gamma_{50\Omega} $ 3dB mod. BW (MHz)	3416	7730	5856	510	308	328	50	30	28
Peak $ \Delta\Gamma_{50\Omega} $, 4900-7200 MHz	0.396	1.437	1.655	0.004	0.003	0.004	0.003	0.007	0.025
Peak ΔΓ _A , 2400-2483 MHz	0.986	1.638	1.849	0.594	1.328	1.373	0.086	0.036	0.057
$ \Delta\Gamma_A $ 3dB mod. BW (MHz)	110	269	322	87	176	183	36	27	27
Peak ΔΓ _A , 4900-7200 MHz	0.407	1.471	1.672	0.005	0.004	0.006	0.004	0.007	0.033

- antenna's higher passbands from 4900-7200 MHz

- communications bands

Acknowledgments and References

¹Unhelkar et al., IJIM Data Insights, 2022. ²Toro et al., IEEE Trans. Green Commun. Netw., 2022. ³Rosenthal et al., *IEEE Trans. Microw. Theory Techn.,* 2019. ⁴Thomas et al., ACM SIGCOMM, 2012. ⁵Alhassoun, *IEEE Access*, 2023.

• A calibrated vector network analyzer was used to measure the two reflection coefficients of each modulator from 0.5–8.5 GHz \rightarrow $|\Delta\Gamma_{50\Omega}|$ and $|\Delta\Gamma_A|$ determined from measurements as discussed previously Simulations were conducted in AWR Microwave Office

 Good qualitative agreement between meas. and sim., especially at lower frequencies. At higher frequencies, FR-4 substrate loss becomes a

Fig. 5: Measured vs simulated $|\Delta\Gamma_{50\Omega}|$ and $|\Delta\Gamma_A|$ for modulator variants Table II: Summary of Measured Key Metrics

• **Modulator only:** high $|\Delta\Gamma|$ within 2.4 GHz ISM band, but also within

• **LTCC BPF + Modulator:** added filter eliminates $|\Delta\Gamma|$ in antenna's higher passbands, and reduces the 3dB modulation BW ($\Delta\Gamma_{3dB}$)

• **CF + Modulator:** narrower $\Delta\Gamma_{3dB}$, but severely reduced in-band $|\Delta\Gamma|$ **Overall,** varactor has lowest $|\Delta\Gamma|$; PIN and pHEMT exhibit similar $|\Delta\Gamma|$ levels, with drawback of higher power consumption or cost, respectively.

Next Steps

• Narrow modulation bandwidth further using reduced-size purpose-built filters, e.g. surface acoustic wave (SAW) or bulk acoustic wave (BAW) filters • Validate approach using higher order modulation schemes and/or in other