ANALYSIS AND DESIGN OPTIMIZATION OF PARALLELED CLASS- Φ_2 **CONVERTERS FOR HIGH-FREQUENCY AND HIGH-POWER APPLICATIONS STUDENTS: MANAS PALMAL**

Motivations

Delivering High-frequency and High-power for applications like Plasma generations, magnetic resonance imaging (MRI), and etc.

Trade-offs of Existing Technology

- Multiple highly inefficient radio-frequency (RF) power-amplifiers are used along with power-combiner network.
- Though power combiner network combines the output power to improve the overall output power ratings, it increases the overall size of the converter.

Objectives of the Proposed Design Method

- Paralleling class- Φ_2 converter, a resonant RF converter, with soft-switching operations, ensures very high-efficiency (\geq 90%) of the overall system.
- Elimination of power combiner network improves the energy density of the overall converter.

Paralleled Class- Φ_2 Converters

• Proposed paralleled class- Φ_2 converters topology

• Simplified circuit model of paralleled class- Φ_2 converters connected to the load at fundamental frequency.

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Design Circuit Parameter			
Parameter	Values	Parameter	Values
L_{S}	$1.76\mu\mathrm{H}$	C_{MR}	$100 \mathrm{pF}$
C_{S}	$105 \mathrm{pF}$	C_{OSS}	$110 \mathrm{pF}$
$ m R_L$	15Ω	C_P	$100 \mathrm{pF}$
L_{MR}	$342 \mathrm{nH}$	$ m L_{F}$	$350 \mathrm{nH}$

ADVISORS: Prof. Jungwon Choi

Hardware prototype developed in lab.

Gate-source and drain-source voltage waveforms during turn-on transitions indicate soft-switching operation.

- High quality factor design.
- Incorporating of variable load operation.
- Closed-loop control.

[1] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri, and D. J. Perreault, "A high-frequency resonant inverter topology with low-voltage stress," IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1759–1771, 2008. [2] L. Roslaniec, A. S. Jurkov et al., "Design of single-switch inverters for variable resistance/load modulation operation," IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3200–3214, 2015. [3] Y. Zhou and J. Choi, "Design of high-frequency, paralleled resonant inverter to control output power for plasma generation," in 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), 2022, pp. 1–7.

Experimental Results

Drain-source voltage waveforms of the four class- Φ_2 converters connected in parallel

Input and output current of a single class- Φ_{γ} converter along with output voltage.

Future Work

References