

## Sample Complexity Reduction via Policy Difference Estimation in Tabular RL Adhyyan Narang, Andrew Wagenmaker, Lillian Ratliff, Kevin Jamieson

## **Motivation: Exploration in RL**

UCB: Plays estimated optimal actions with a bonus term for exploration.

Wagenmaker et.al, 2022: Plays "informative" actions to estimate the value of each policy individually.

 $\sum_{h=1}^{H} \inf_{\pi_{\exp}} \max_{\pi \in \Pi} \frac{\|\phi_h^{\pi}\|_{\Lambda_h(\pi_{\exp})^{-1}}^2 + \|\phi_h^{\star}\|_{\Lambda_h(\pi_{\exp})^{-1}}^2}{\max(\Delta(\pi)^2, \epsilon^2)}$ 

Li et.al, 2022: Obtains complexity in terms of estimating the value of differences between policies. This can be arbitrarily better when policies are similar (see right).

 $ho_{\Pi} := \sum_{h=1}^{H} \inf_{\pi_{ ext{exp}}} \max_{\pi \in \Pi} rac{\|\phi_h^{\star} - \phi_h^{\pi}\|_{\Lambda_h(\pi_{ ext{exp}})^{-1}}^2}{\max\{\epsilon^2, \Delta(\pi)^2\}}$ 

**Present Work: QI** Can we obtain this complexity for Tabular MDP? Q2 If yes, what algorithmic insights does this provide?

### **Preliminaries**

- Episodic, finite-horizon, time inhomogeneous and tabular MDPs, denoted by  $(\mathcal{S}, \mathcal{A}, H, \{P_h\}, \{r_h\})$ .
- $P_h$  denotes transition matrix and  $r_h$  the reward function at time h.
- Define  $\phi_h^{\pi}(s, a)$  as the probability that policy  $\pi$  visits state s and plays action a at time h.

• Define 
$$Q_h^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{h'=h}^{H} r_{h'}(s_{h'}, a_{h'}) \middle| s_h = s, a_h = a \right].$$

• Define  $V_h^{\pi}(s) = \mathbb{E}_{a \sim \pi}[Q_h^{\pi}(a, s)].$ 

 $(\epsilon, \delta)$  Best Policy Identification: Given a set of policies  $\Pi$ , we want to find a policy  $\hat{\pi}$  that is within  $\epsilon$  of the best policy with probability  $(1 - \delta)$ .

• Define 
$$\Delta(\pi) = \max_{\mu \in \Pi} V_0^{\mu} - V_0^{\pi}$$
  
•  $\Lambda_h(\pi) = \sum_{s,a} \phi_h^{\pi}(s,a) \ e_{sa} e_{sa}^{\top}$ 

## Lower Bound: Negative Answer to QI





## Main Upper Bound: Semi-positive Answer to QI



Above, 
$$U(\pi, \pi^{\star}) := \sum_{h=1}^{H} \mathbb{E}_{s \sim w_h^{\pi^{\star}}} \left[ \left( Q_h^{\pi}(s, \pi_h(s)) - Q_h^{\pi}(s, \pi_h^{\star}(s)) \right)^2 \right]$$

- Best known complexity for Tabular MDPs.

### University of Washington



**Proposition (Informal)** For this example instance,

maker, 2022) = 
$$1/\epsilon^2$$
,

**Theorem (Informal)** PERP finds an  $\epsilon$ -optimal policy with probability

$$\frac{V(\pi, \pi^{\star})}{(\epsilon^{2}, \Delta(\pi)^{2})} \left( \log \left( \frac{|\Pi|}{\delta} \right) \right) \text{ samples}$$
$$\log \left( \frac{|\Pi|}{\delta} \right) \text{ samples.}$$

• On example, the new term is  $1/\epsilon$  and matches the lower bound.

• New Term  $\rightarrow$  Estimating the value of a single reference policy  $\bar{\pi}$ , after which we pay  $\rho_{\Pi}$  to estimate the difference between  $\bar{\pi}$  and any other  $\pi$ .

## Algorithm

#### Algorithm 1 PERP: Policy Elimination with Reference Policy (shortened)

**Require:** tolerance  $\epsilon$ , confidence  $\delta$ , policies  $\Pi$ 

- 1:  $\Pi_1 \leftarrow \Pi, \epsilon_\ell \leftarrow 2^{-\ell}$
- 2: for  $\ell = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$  do
- Choose "centroid" policy  $\bar{\pi}_{\ell} \in \Pi_{\ell}$
- Collect  $\mathfrak{D}_{\bar{\pi}}$  by playing  $\bar{\pi}_{\ell}$  with  $\bar{n}_{\ell} \leftarrow O\left(\max_{\pi \in \Pi_{\ell}} \frac{\widehat{U}_{\ell-1}(\pi, \bar{\pi}_{\ell})}{\epsilon_{\ell}^2} \cdot \log \frac{|\Pi_{\ell}|}{\delta}\right)$
- Estimate  $\widehat{w}_{h}^{\overline{\pi}}$  from  $\mathfrak{D}_{\overline{\pi}}$
- for h = 1, 2, ..., H do
- Collect data  $\mathfrak{D}_{FW}$  using procedure from (Wagenmaker, 2022) satisfying: 7:

$$\sup_{\pi\in \Pi_\ell} \|\widehat{\phi}_h^{\pi_\ell} - \widehat{\phi}_h^{\pi}\|_{\Lambda_{\ell,h}^{-1}}^2 \leq \epsilon_\ell^2 \;\; ext{ for } \;\; \Lambda_{\ell,h} = \sum_{(s,a)\in \mathfrak{D}_{ ext{FW}}} e_s$$

- end for
- Compute  $\widehat{\Delta}_{\overline{\pi}_{\ell}}(\pi)$  and update:

$$\Pi_{\ell+1} \leftarrow \Pi_{\ell} \setminus \Big\{ \pi \in \Pi_{\ell} : \max_{\pi'} \widehat{\Delta}_{\bar{\pi}_{\ell}}(\pi') - \widehat{\Delta}_{\bar{\pi}_{\ell}}(\pi) > \epsilon \Big\}$$

10: **end for** 

- 11: **return** any  $\pi \in \prod_{\ell \neq 1}$
- In the example, PERP would play  $a_2$  because this gets us to the RED STATE that we care about.
- UCB, PEDEL would play  $a_1$ .

### Keys to the Analysis: Answer to Q2

- Instead of estimating  $V_0^{\pi}$  directly, use estimator  $\hat{\Delta}_{\bar{\pi}}(\pi)$  above for  $\Delta_{\bar{\pi}}(\pi) = V_0^{\pi} - V_0^{\bar{\pi}}.$
- Actively collected data to cover states where policies disagree  $\rightarrow$  $\hat{\Delta}_{\bar{\pi}}(\pi)$  is reduced-variance estimator  $\rightarrow$  State of the art sample complexities.

Key insight: Playing informative actions to collect exploratory data where policies disagree can lead to large sample complexity savings!



Adhyyan Narang, Andrew Wagenmaker, Lillian Ratliff, Kevin Jamieson

#### **Motivation**

• In contextual bandits, (Li et.al, 2022) obtains complexity in terms of estimating the value of differences between policies.

$$\rho_{\Pi} := \sum_{h=1}^{H} \inf_{\pi_{\exp}} \max_{\pi \in \Pi} \frac{\|\phi_{h}^{\star} - \phi_{h}^{\pi}\|_{\Lambda_{h}(\pi_{\exp})^{-1}}^{2}}{\max\{\epsilon^{2}, \Delta(\pi)^{2}\}}$$

Best known complexity in Tabular MDP (Wagenmaker et.al, 2022) is terms of estimating the value of each policy individually.

$$\sum_{h=1}^{H} \inf_{\pi_{\exp}} \max_{\pi \in \Pi} \frac{\|\phi_h^{\pi}\|_{\Lambda_h(\pi_{\exp})^{-1}}^2 + \|\phi_h^{\star}\|_{\Lambda_h(\pi_{\exp})^{-1}}^2}{\max(\Delta(\pi)^2, \epsilon^2)}$$

• This can be arbitrarily worse when policies are similar (see right).

#### Main Questions:

**QI** Can we obtain this complexity for Tabular MDP?

Q2 If yes, what algorithmic insights does this provide?

### **Preliminaries**

- Episodic, finite-horizon, time inhomogeneous and tabular MDPs, denoted by  $(\mathcal{S}, \mathcal{A}, H, \{P_h\}, \{r_h\})$ .
- $P_h$  denotes transition matrix and  $r_h$  the reward function at time h.
- Define  $\phi_h^{\pi}(s, a)$  as the probability that policy  $\pi$  visits state s and plays action a at time h.

• Define 
$$Q_h^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{h'=h}^{H} r_{h'}(s_{h'}, a_{h'}) \middle| s_h = s, a_h = a \right]$$

• Define 
$$V_h^{\pi}(s) = \mathbb{E}_{a \sim \pi}[Q_h^{\pi}(a, s)].$$

• Define  $\Delta(\pi) = \max_{n \to \infty} V_0^{\mu} - V_0^{\pi}$ 



## Main Upper Bound: Semi-positive Answer to QI

$$(1 - \delta)$$
 and consumes (upto lo

For any MDP: 
$$\left(\rho_{\Pi} + \frac{U(\pi, \pi^{\star})}{\max(\epsilon^2, \Delta(\pi)^2)}\right) \log\left(\frac{|\Pi|}{\delta}\right)$$
 samples  
For contextual bandits:  $\rho_{\Pi} \log\left(\frac{|\Pi|}{\delta}\right)$  samples.

Above, 
$$U(\pi, \pi^{\star}) := \sum_{h=1}^{H} \mathbb{E}_{s \sim w_h^{\pi^{\star}}} \left[ \left( Q_h^{\pi}(s, \pi_h(s)) - Q_h^{\pi}(s, \pi_h^{\star}(s)) \right)^2 \right],$$

- Best known complexity for Tabular MDPs.

# Sample Complexity Reduction via Policy Difference Estimation in Tabular RL

## University of Washington



## $(\epsilon, \delta)$ Best Policy Identification

Given a set of policies  $\Pi$ , we want to find a policy  $\hat{\pi}$  that is within  $\epsilon$  of the best policy with probability  $(1 - \delta)$ .

**Theorem (Informal)** PERP finds an  $\epsilon$ -optimal policy with probability lower order terms) at most

• On example, the new term is  $1/\epsilon$  and matches the lower bound.

## Algorithm

#### Algorithm 1 PERP: Policy Elimination with Reference Policy (shortened)

**Require:** tolerance 
$$\epsilon$$
, confidence  $\delta$ , policies  $\Pi$ 

1:  $\Pi_1 \leftarrow \Pi, \epsilon_\ell \leftarrow 2^{-\ell}$ 

- 2: for  $\ell = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$  do
- Choose "centroid" policy  $\bar{\pi}_{\ell} \in \Pi_{\ell}$
- Collect  $\mathfrak{D}_{\bar{\pi}}$  by playing  $\bar{\pi}_{\ell}$  with  $\bar{n}_{\ell} \leftarrow O\left(\max_{\pi \in \Pi_{\ell}} \frac{\widehat{U}_{\ell-1}(\pi, \bar{\pi}_{\ell})}{\epsilon_{\ell}^2} \cdot \log \frac{|\Pi_{\ell}|}{\delta}\right)$
- Estimate  $\widehat{w}_{h}^{\overline{\pi}}$  from  $\mathfrak{D}_{\overline{\pi}}$
- for h = 1, 2, ..., H do
- Collect data  $\mathfrak{D}_{FW}$  satisfying: 7:

$$\sup_{\pi\in\Pi_\ell}\|\widehat{\phi}_h^{\overline{\pi}_\ell}-\widehat{\phi}_h^{\pi}\|_{\Lambda_{\ell,h}^{-1}}^2\leq \epsilon_\ell^2 \quad \text{for} \quad \Lambda_{\ell,h}=\sum_{(s,a)\in \mathbb{N}} |\widehat{\phi}_h^{\overline{\pi}_\ell}-\widehat{\phi}_h^{\overline{\pi}_\ell}|_{\Lambda_{\ell,h}^{-1}}^2\leq \epsilon_\ell^2 \quad \text{for} \quad \Lambda_{\ell,h}=\sum_{(s,a)\in$$

8: end for

Compute  $\widehat{\Delta}_{\overline{\pi}_{\ell}}(\pi)$  and update: 9:

$$\Pi_{\ell+1} \leftarrow \Pi_{\ell} \setminus \Big\{ \pi \in \Pi_{\ell} : \max_{\pi'} \widehat{\Delta}_{\bar{\pi}_{\ell}}(\pi') - \widehat{$$

10: end for

11: **return** any  $\pi \in \prod_{\ell \neq 1}$ 

- In the example, PERP would play  $a_2$  because this gets us to the RED STATE that we care about.
- UCB, PEDEL would play  $a_1$ .

### Keys to the Analysis: Answer to Q2

- Instead of estimating  $V_0^{\pi}$  directly, use estimator  $\hat{\Delta}_{\bar{\pi}}(\pi)$  above for  $\Delta_{\bar{\pi}}(\pi) = V_0^{\pi} - V_0^{\bar{\pi}}.$
- Actively collected data to cover states where policies disagree  $\rightarrow$  $\Delta_{\bar{\pi}}(\pi)$  is reduced-variance estimator  $\rightarrow$  State of the art sample complexities.

Key insight: Playing informative actions to collect exploratory data where policies disagree can lead to large sample complexity savings!

