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• At the end of each trial, the correct category was revealed and the subjects recorded the accuracy of 
their category guess. 

Algorithm

• Episodic, finite-horizon, time inhomogeneous and tabular MDPs, 
denoted by . 

•  denotes transition matrix and  the reward function at time .

• Define  as the probability that policy  visits state  and plays 

action  at time .

• Define .

• Define .
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Main Upper Bound: Semi-positive Answer to Q1

Theorem (Informal) PERP finds an -optimal policy with probability 
 and consumes (upto lower order terms) at most

• For any MDP:  samples

• For contextual bandits:  samples.
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Above, 

• On example, the new term is  and matches the lower bound.
• Best known complexity for Tabular MDPs.

• New Term  Estimating the value of a single reference policy , after 

which we pay  to estimate the difference between  and any other .
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• In the example, PERP would play  because this gets us to the 
RED STATE that we care about.

• UCB, PEDEL would play .

a2

a1

• At the end of each trial, the correct category was revealed and the subjects recorded the accuracy of 
their category guess. 

Keys to the Analysis: Answer to Q2

• Instead of estimating  directly,  use estimator  above for 

.

• Actively collected data to cover states where policies disagree  

 is reduced-variance estimator  State of the art sample 
complexities.

Key insight: Playing informative actions to collect exploratory data 
where policies disagree can lead to large sample complexity savings!
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Lower Bound: Negative Answer to Q1

Proposition (Informal) For this example instance,  

•  = Constant,

• PEDEL from (Wagenmaker, 2022) = ,

• Lower Bound:  Any -PAC algorithm must consume at 

least  samples.
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Li et.al, 2022: Obtains complexity in terms of estimating the value of 
differences between policies.  This can be arbitrarily better when policies 
are similar (see right). 

Present Work:  Q1 Can we obtain this complexity for Tabular MDP?
Q2 If yes, what algorithmic insights does this provide?

 Best Policy Identification: Given a set of policies , we want to 

find a policy  that is within  of the best policy with probability .

• Define  

•
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UCB: Plays estimated optimal actions with a bonus term for exploration.

Wagenmaker et.al, 2022: Plays “informative” actions to 
estimate the value of each policy individually. 
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• In contextual bandits, (Li et.al, 2022) obtains complexity in terms of 
estimating the value of differences between policies. 

• Best known complexity in Tabular MDP (Wagenmaker et.al, 2022) is 
terms of estimating the value of each policy individually. 

• This can be arbitrarily worse when policies are similar (see right).

Main Questions: 
Q1 Can we obtain this complexity for Tabular MDP?
Q2 If yes, what algorithmic insights does this provide?

Given a set of policies , we want to find a policy  that is within 
 of the best policy with probability .

• Define  

Π ̂π
ϵ (1 − δ)

Δ(π) = max
μ∈Π

Vμ
0 − Vπ

0

 Best Policy Identification(ϵ, δ)
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