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Background: Jailbreak Attacks & Defenses

TL;DR

1. We introduce SafeDecoding, a safety-aware decoding strategy for LLMs to 
generate helpful and harmless responses to user queries.

2. SafeDecoding identifies harmful queries by capturing the token probability 
shift between the original and the fine-tuned model.

3. SafeDecoding reduces attack success rate and the harmfulness of jailbreak 
attacks without compromising the helpfulness of responses to benign user 
queries.

Jailbreak Attacks: The adversary designs malicious prompts to circumvent safety 
alignments of LLMs.

Can we efficiently enhance LLM safety against jailbreak attacks 
without compromising helpfulness to benign users?

Current Attacks Current Defenses

Empirical Attacks
• Jailbreakchat
• Jiabroken
• DAN
Optimization-based Attacks
• Gradient-based: GCG [1]

• Genetic algorithm-based: AutoDAN [2]

• Edit-based: PAIR [3]

Detection-based Defenses
• Perplexity-based Filter
• SmoothLLM
• RA-LLM
Mitigation-based Defenses
• In-context Demonstration (ICD)
• Self-Reminder
• Self-Examination

SafeDecoding

Observations and Insights

Autoregressive Generation

Key Observations:
• The success of jailbreak attacks is due to 

the dominance of token sequences that 
align with the attacker’s goal (e.g., Sure, 
here is xxx)

• However, safety disclaimers still exist in the 
sample space, indicating the awareness of 
the LLM to attacks.

Illustration of Vicuna-7B model under GCG Attack [1]

Solution Insights:
1. Attenuate token probabilities that align 

with the attacker’s goal
2. Amplify token probabilities that align with 

human value including safety

SafeDecoding Overview

Experimental Results

• Attack Methods: GCG [1], AutoDAN [2], PAIR [3], SAP30 [4], DeepInception [5], Template [6]

• Baselines: PPL, Self-Examination, Paraphrase, Retokenization, 

      Self-Reminder, ICD [7-11]

• Evaluation Metrics: Attack Successful Rate (ASR), Harmful Score; Average Token Generation 
Time Ratio (ATGR); MT-Bench [12], Just-Eval [13]

Design Details

Training Phase Construct Expert Model

• Fine-tune the original model using a small safety dataset contains only 32 harmful queries 
spanning 16 harmful categories

Inference Phase Construct New Token Distribution

1. Construct New Sample Space in 𝑛-th step

Set of top-k tokens of the original model               expert model2. Define Probability Function

Normalize: expert model original model

Increase Helpfulness and Efficiency

• Apply SafeDecoding at the first 𝑚 steps of the decoding process.

Takeaway 1: SafeDecoding Enhances LLM Safety 

Takeaway 2: SafeDecoding is Helpful and Efficient

Example Demonstrations of SafeDecoding

Falcon 7B + SAP30 Vicuna 7B + PAIR Vicuna 7B + Benign Request
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