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Empirical Efficiency vs Theoretical Inference Speed
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Transformers have O(n"2) time complexity because each token compares itself with every
other token in the sequence to compute attention. This means longer sequences require a lot
more computation.

Qualitative Inference: MambaZ2-2.7b (INT8) model
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o Transforms input embeddings into a representation compatible with the
SSM layer
e 1D convolutional layer + SILU activation layer
o Introduces local dependencies prior to feeding the data into the SSM layer
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e Normalization layer
o Ensures stable training and convergence
e Activation layer + Output projection layer
o Qutput projection maps features to logits for token prediction

Summary of Results
e Quantized Mamba2-2.7b (INT8) model showed less than 3% accuracy degradation
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