

Super-Glue: Interactive Web Tool to Facilitate Chemistry <> ML Collaboration

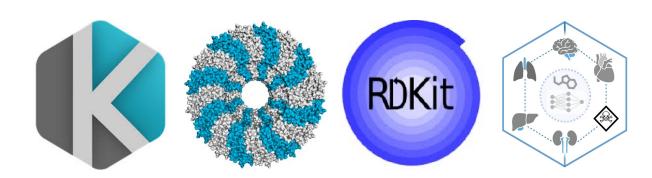
Overview

Background and Motivation Machine learning (ML) is transforming

Medicinal Chemistry enabling rapid pharmaceutical development. However, it lacks the intuition honed by expert chemists through decades of knowledge acquisition.

Super-Glue aims to "glue" together expert knowledge with ML, enhancing model performance, fostering cross-domain trust, and integrating AI into existing drug discovery pipelines.

Overall Goal: To create an interactive web tool to facilitate the collaboration of expert medicinal chemistry knowledge with ML in a scalable and data-driven manner.


Objectives: Aggregated User Stories (from over 20)

- **Experimentalist** exploring drug discovery with limited coding experience, seeking a user-friendly interface to **visualize** molecules, **highlight** key functional groups, and leverage AI for **property prediction** based on existing data.
- **ML specialist** proficient in predictive modeling but new to cheminformatics, seeking a curated, **annotated molecular dataset** in a **structured format** that integrates seamlessly with **Python workflows**.

Technologies Used

Frontend

- Ketcher¹ a web-based chemical structure editor that is open-source and free to use
- React
- Vite
- Ant Design
- 3Dmol.js² enables 3-D molecular modeling

Backend

- Flask web framework that is simple and easy to learn and offers high flexibility
- RDKit³ open-source toolkit for cheminformatics
- Unittest
- ADMET_ai⁴ Python package that provides fast and accurate ADMET predictions

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

STUDENTS: Adrian He, Hongyan Liu, Zoe Williams, Junyi Eric Ying

Front End			
s	Structure	Properties	
npute port	Br	LogP – 2.5 QED – 0.97 Affinity – 0.60	
-			
Ba	ick End		
	ubstructure Innotations	Compute Workloads	
		-	

Design Flow

Home Page

• Login, **upload** a .csv file, and view previously uploaded files.

Summary Page

- After uploading, **preview** the dataset in a tabular view.
- Toggle to view all saved highlights across all molecules.

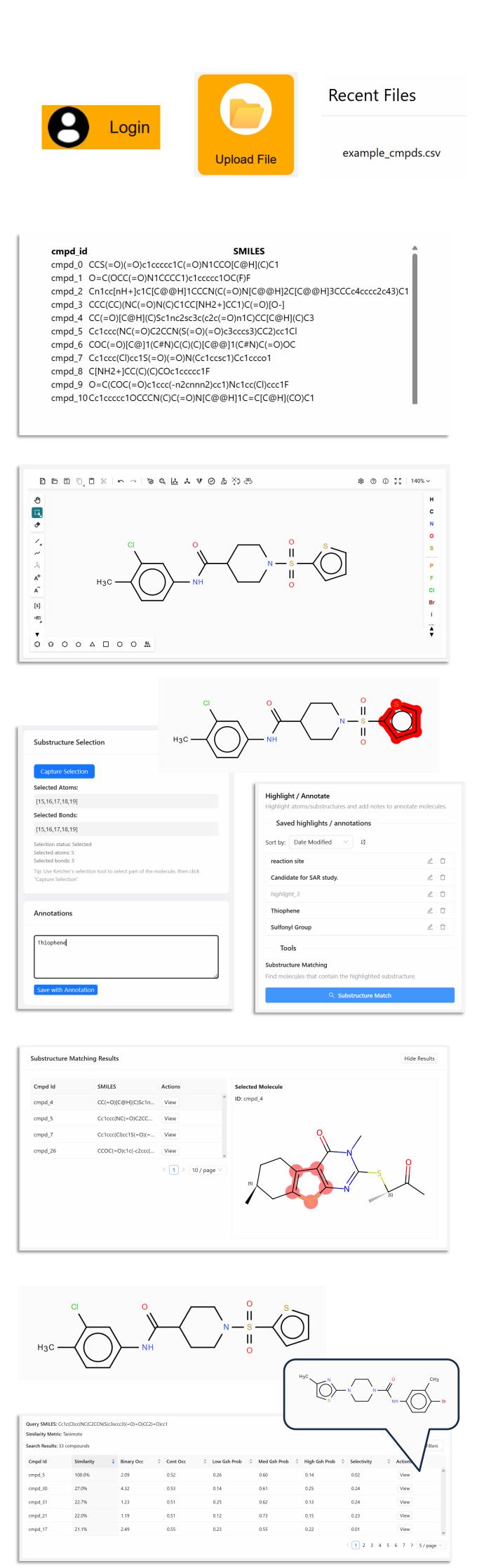
Molecular Visualization

• Molecules are rendered with **Ketcher**, enabling real-time interaction with structures directly in the browser.

Annotation + Highlighting

- Highlight atoms or substructures, add **annotations** for reactions or key features.
- Saved highlights are listed in a table for easy review.

Substructure Matching


- Search for molecules with **matching substructures** using saved highlights.
- Results include a table with **highlighted regions** for quick pattern recognition.

Similarity Search

- Identify structurally similar compounds using various similarity **metrics**.
- Adjust **thresholds** and view ranked results with similarity scores.

CHEMICAL ENGINEERING UNIVERSITY of WASHINGTON

SPONSOR: Expedition Medicines

Design Flow

Property Computations • Calculate simple properties like **logP** with

- **RDKit**.
- Run drug-likeness predictions using ADMET_ai.

3-D Modeling

- Visualize molecules in an **interactive 3D viewer** – rotate, zoom, explore.
- Upload **SDF Files** for accurate geometries, or auto-generate from SMILES.

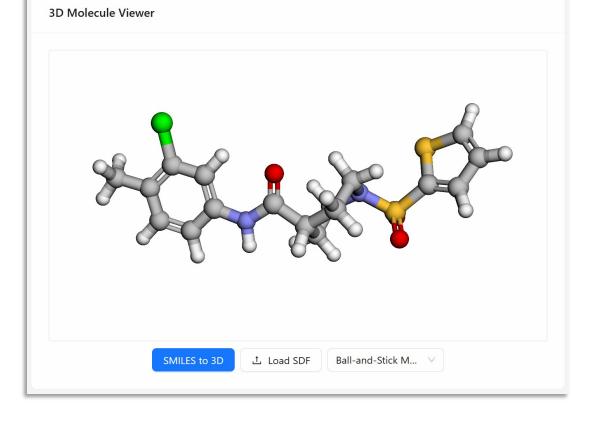
Conclusion

Main Takeaways

- development,

Future Work

- Containerization for cloud deployment
- greater accuracy and utility


References

- . Ketcher: Web-based chemical structure editor S1-P3.
- 31(8): 1322-1324, 2015, doi: https://doi.org/10.1093/bioinformatics/btu829.
- B. RDKit: Open-source cheminformatics. https://www.rdkit.org, doi: https://doi.org/10.5281/zenodo.591637.

ADVISORS: Dr. Mahdi Horbani, Dr. Orion Dollar, Dr. David Beck

EXPEDITION MEDICINES

Properties from CSV			
binary_occ:	2.09		
cont_occ:	0.52		
low_gsh_prob:	Predicted ADMET Properties		
med_gsh_prob:	SMILES: Cc1c(Cl)cc(NC(c2CCN(S(c3sccc3)(=0)=0)CC2)=0)cc1		
high_gsh_prob:			
selectivity: > Toxicity			
	> DrugBank Percentiles		
	✓ Absorption & Distribution		
Calculated Properties	BBB Martins	0.961	
	Caco2 Wang	-5.054	
Calculate Properties	HydrationFreeEnergy FreeSolv	-7.823	
SMILES:	PAMPA NCATS	0.990	
Cc1nc(N2CCN(C(Nc3cc(C)c(Br)cc3)=O	Pgp Broccatelli	0.439	
	VDss Lombardo	-0.293	
	✓ Metabolism & Elimination		
	CYP1A2 Veith	0.683	

• Super-Glue allows users to upload their molecular data, annotate their findings, find similar molecules, and predict complex properties crucial drug

• Super-Glue is a platform that combines AI with human intuition, by fostering trust, enabling collaboration, and optimizing drug discovery

• We plan to expand similarity search to larger databases like PubChem for

• Finetuning of ADMET using client specific data for generative AI

https://github.com/epam/ketcher/releases/tag/v3.2.0, doi: https://doi.org/10.1186/1758-2946-3-

2. Nicholas Rego and David Koes, "3Dmol.js: molecular visualization with WebGL", Bioinformatics

4. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries https://github.com/swansonk14/admet_ai, doi: https://doi.org/10.1093/bioinformatics/btae41

https://github.com/SuperGlue2025/SuperGlue2025