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« These method can be combined into sample-based Krylov quantum (i) i
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diagonalization (SKQD), in which the subspace is built from samples taken
from circuits generating Krylov states.

Pauli correlation encoding (PCE) is a method of compression designed to work
with variational quantum algorithms (VQASs) for performing quadratic
unoptimized binary optimization (QUBO).

PCE utilizes correlations between quantum states to decrease the required
number of qubits in a quantum circuit to a maximum of O(n'/?) for n variables
Each bit value x; is encoded as sign({l'1)) for a correlator I, where is I, is the
product of two identical Pauli matrices over two qubits (e.g., IXIXIl for 6 qubits)

SKQD:
Because SKQD generates Krylov states using the Hamiltonian, we require the
PCE Hamiltonian to remain Hermitian.
The approximate PCE Hamiltonian is
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To avoid non-commuting correlators in the product
term, we divide a graph into large independent sets to
color our graphs. Within each set, we perform a
separate encoding.

Qubit compression decreases with increasing graph
connectivity

Farm graph coloring

Krylov states tend to be
required for good ground
state approximation.
Circuit depths tend to
increase linearly with k.
Estimating 100 ns per gate
operation, circuits with
large k will likely require
milliseconds of QPU usage.
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For QAOA, the number of iterations increases with circuit depth
Algorithm performance quantified by average loss function is sensitive to circuit depth
Approximation ratios without refinement are >.9

Max Approximation Ratios for QAOA

QAOA lterations vs Circuit Depth

QAOA Loss Function vs Circuit Depth
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Other classical optimization problems like
max-cut are also good candidates for SKQD
methods.

Tuning At per graph could improve
accuracy and reduce the number of Krylov
states necessary for good solutions.

gquantum optimization solvers with few qubits.
arXiv preprint arXiv:2401.09421v2 [quant-ph].
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