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Sample-based Krylov Quantum Diagonalization[1]

Pauli Correlation Encoding[2]

Maximum Independent Set SKQD Workflow

Results – SKQD, QAOA
• Krylov diagonalization is a method by which the eigenpairs of a matrix may be 

approximated. Instead of diagonalizing the entire matrix, we do so in a 

smaller subspace generated by Krylov states; in the quantum case, these 

Krylov states can be |ψk⟩=e−ikH∆t|ψ0⟩ for a Hamiltonian H and initial state |ψ0⟩.

• Sample-based quantum diagonalization is a quantum diagonalization method 

for systems with sparse ground states – meaning the ground state is a 

superposition dominated by relatively few basis states. By building an 

approximate ground state and sampling basis states to form a subspace, the 

ground state and energy can be approximated by projecting into said 

subspace and classically diagonalizing.

• These method can be combined into sample-based Krylov quantum 

diagonalization (SKQD), in which the subspace is built from samples taken 

from circuits generating Krylov states.

Graph[3] Nodes Edges MIS Size

Farm 17 39 10

IBM32 32 94 13

Karate 34 78 20

Farm graph

Farm graph MIS (purple)

• Maximum independent set (MIS) is an NP-Hard constrained quadratic 

optimization problem with the goal of finding a graph's independent set – a 

set of nodes in which none are connected by an edge – with the maximum 

possible number of nodes.
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• Pauli correlation encoding (PCE) is a method of compression designed to work 

with variational quantum algorithms (VQAs) for performing quadratic 

unoptimized binary optimization (QUBO).

• PCE utilizes correlations between quantum states to decrease the required 

number of qubits in a quantum circuit to a maximum of O(n1/2) for n variables

• Each bit value xi is encoded as sign(⟨Πi⟩) for a correlator Πi , where is Πi is the 

product of two identical Pauli matrices over two qubits (e.g., IXIXII for 6 qubits) 

Future Directions and References

PCE Setup for MIS

• Because SKQD generates Krylov states using the Hamiltonian, we require the 

PCE Hamiltonian to remain Hermitian. 

• The approximate PCE Hamiltonian is 

• To avoid non-commuting correlators in the product 

term, we divide a graph into large independent sets to 

color our graphs. Within each set, we perform a 

separate encoding.

• Qubit compression decreases with increasing graph 

connectivity

Farm graph coloring
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• Sample-based methods with constraints 

can support configuration recovery – a 

method to recover invalid bitstrings based 

on information in valid bitstrings.

• Other classical optimization problems like 

max-cut are also good candidates for SKQD 

methods.

• Tuning ∆t per graph could improve 

accuracy and reduce the number of Krylov 

states necessary for good solutions.

• Heuristic solutions were 

generated by adding bits to 

the set in order of 

decreasing probability until 

the set was no longer 

independent.

• Unrefined sets tend to have 

poor approximation ratios, 

but the refined sets all 

achieved an optimal MIS.

• For larger graphs, more 

Krylov states tend to be 

required for good ground 

state approximation.

• Circuit depths tend to 

increase linearly with k.

• Estimating 100 ns per gate 

operation, circuits with 

large k will likely require 

milliseconds of QPU usage.
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• For QAOA, the number of iterations increases with circuit depth

• Algorithm performance quantified by average loss function is sensitive to circuit depth

• Approximation ratios without refinement are >.9

SKQD:

QAOA:

• Traditionally, the quantum approximate optimization algorithm (QAOA) is a 

VQA that uses an Ising Hamiltonian to generate approximate solutions to a 

given QUBO

• Here, we employ a flexible parameterized brickwork ansatz with a loss 

function to perform an approximate optimization as a benchmark for QAOA

• For positive constants M and L and with the first sum being over all edges and 

second over nodes, the problem can be captured with the following loss 

function:
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