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• The Lunar Electromotive Launcher is designed for lunar in-situ resource 

utilization.

• Electromagnetic systems are more cost efficient than chemical rockets.

• Using electromotive systems, lunar ice can be transported and then used to 

create oxygen and hydrogen fuels for spacecraft .

Motivation

• Evaluate the feasibility of a lunar induction coilgun for cargo launch from the 

Moon’s South Pole.

• Develop and validate a lunar coilgun system capable of launching 6,000 kg 

payloads at 2,353 m/s (±1%) through a 1.6 m bore.

• Maintain strict operational limits: ≤7,500 m/s^2 acceleration, 16-hour launch 

cadence, and 1° targeting precision.

• Prove feasibility through subscale testing and simulation validation while 

meeting lunar constraints for our full-scale design.

Requirements

Conceptual Design

• Designed a subscale induction coil model to produce data to verify simulation 

model

• Generated a MATLAB simulation model to test with data from subscale

• Produced a conceptual design of our full-scale model

• Evaluated the feasibility of full-scale model

Conclusion

Subscale Testbed

• Our induction launcher uses electromagnetic coils to accelerate our projectile. 

• High energy capacitor banks provide rapid discharge to our coils, allowing 

quick current pulses to each coil stage, generating a large magnetic field.

• Modular coilgun design allows controlled testing of multiple parameters to 

verify simulation accuracy.

• The varied parameters we can change include number of coil stages (1-4), 

capacitor bank voltage and capacitance, armature winding thickness, and 

starting position of armature with respect to the first stage coil.

• Parameters being sampled include voltage across capacitor banks, current through our 

coils, and the position of our projectile.

• Once the Raw data is collected, it is transferred to a computer, where python is employed to 

interpolate the data to produce a constant time interval, filter out high frequency noise, and  

scale the data into relevant units based on external parameters

Data Collection

Simulation

Future Work

• Verify simulation model with subscale test data

• Scale simulation to large-scale design

• Optimize switching system for multistage subscale design to increase efficiency

• Use verified simulation to optimize conceptual design parameters

Baseline:
● MO

○ Payload:  up to 6000 kg*
○ Projectile velocity: 2353 ±

1%
○ Maximum acceleration:

7500 m/s2

● EM
○ Efficiency: 30%*
○ Coil material: Pure copper
○ Coil turns: 0.98

● Geometry
○ Center radius: 0.98 m
○ Inner radius: 0.80 m
○ Stage width: 0.48 m*
○ Length: 339 m*

Closed designs for 5 configurations:

1. Baseline
2. Increased length: 750 m
3. Half mass: 3000 kg
4. Lower efficiency: 10%
5. Double stage width: 0.96 m

• The full scale conceptual design will be guided by the simulation once it is verified by the 

subscale mode. Initially, the simulation will rank the performance of five point designs:

• The simulation must model the electromagnetic physics behind a coil based

launcher, most notably Faraday’s Law of Induction and the Lorentz Force

• We must be capable of simulating the subscale testbed and the final 

conceptual design, which both rely on the same physical principles despite the 

vast differences in scale.

• Pictured below are two frames of an axisymmetric view of the simulated 4 

stage subscale testbed. Each coil fires as the projectile passes by, accelerating 

it.
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