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 The Lunar Electromotive Launcher is designed for lunar in-situ resource - Parameters being sampled include voltage across capacitor banks, current through our « The full scale conceptual design will be guided by the simulation once it is verified by the
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« Qur induction launcher uses electromagnetic coils to accelerate our projectile. launcher, most notably Faraday's Law of Induction and the Lorentz Force N ‘
« High energy capacitor banks provide rapid discharge to our coils, allowing . We must be capable of simulating the subscale testbed and the final ——

quick current pulses to each coil stage, generating a large magnetic field. conceptual design, which both rely on the same physical principles despite the — , Condensed Regolith Radiator Block
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verity simulation accuracy. | | +  Pictured below are two frames of an axisymmetric view of the simulated 4 e
 The ve?rled parameters we can chgnge include numb.er Qf c0|I.stageS (1-4), stage subscale testbed. Each coil fires as the projectile passes by, accelerating

capacitor bank voltage and capacitance, armature winding thickness, and it

starting position of armature with respect to the first stage coil.
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