Efficient Inference of Large Language Models

on a Single GPU Lenovo

STUDENTS: MIHIR PATHAK, ANNIE HUANG, YIFEI SHEN, KATHERINE TANG, ARVIND RAMAN, TIANYI LI

* Problems Statement: Large Language Models (LLMs), like LLaMA 3-70B, require . I of Different O Across All
Large Models & Step1: Post-Training Quantization (PTQ) Method Selection & Integration: We i
over 140 GB of memory in FP16, far exceeding the capacity of cost-effective GPUs investigated various compression
like NVIDIA A40 (48 GB). Long-context inference further amplifies memory and Data Loader O oT - oté ITTTID o D techniques to enable efficient inference on o,
compute demands, resulting in high latency and low throughput[1]. ¢ ¢ J 5 ¢) i a single A40 GPU. After evaluating several
* Objective: Enable efficient inference of LLMs on a single A40 GPU by: input 5 e e, options, we converged on a unified ;™
> Supporting >10k-token inputs N . . L pipeline focused on compression
o Ensuring <5% accuracy degradation Model i @Howtoquantize? '} ; Method: AWQ i effectiveness and ease of integration.
o Achieving 210 tokens/sec throughput Compression Step2: Weight Pruning Quantization - AWQ: Selected over QTIP, **

ShortGPT SmoothQuant, GPTQ for seamless R n i | | | | 7
framework support, better arc_challnge arc_sasy winogrande ame2s gpaa_damond
performance-efficiency trade-off, and

§ . superior pruning synergy. M Dense (0righna) Dense + ShorlGPT 10
Smaller and Faster KV Cache \ Method: ShortGPT pruning - ShortGPT: Outperformed INT4AWQ AWQ + ShotGPT 10 M ShortGPT 5 + AWQ
Optimization] Wanda and SliceGPT with full attention , of Different Optimizat - Perplexity
Step3: KV Optimization based on Inference Engines block pruning, minimal structural change,

and negligible degradation (<10 layers). .
output KV Cache -. B weache INTBM2 5
Quantization KV Cache - PyramidKV: Enables 10K+ H
A g token inference via layer-wise importance i

Lightweight : .
H

% W/
n ; Pl e - P Gy decay, retaining critical entries vs. uniform
. 7 odels Quantized truncation.
S Efficient Inference Methods — k
<L Pipeline Why This Combination? AWQ enables .
efficient low-bit inference; ShortGPT Qi Do WTAWQ A. - swoicerse

Compressed Liama 708 enhances efficiency with minimal e e
Llama 70B inference inference on only one GPU Y Lower PPL values indicate better language model performance
on multi GPUs KV Cache disruption and easy integration;
Optimazation We experimented with a variety of compression techniques: Fig.1 Qtip Quantization Benchmarking PyramidKV further addresses kv cache Comparison of Model Size Reduction Techniques
Quantization: 7 atm2veightany winoutietng) - MemMory bottlenecks. The complementary

design enables real-world deployment on

« QTIP SOTA int2 weight-quantization method using incoherent
Q Bhtq s constrained hardware.

. e I
KV CACHE Post-Training Weight processing ar_‘nd Trellis-based codebooks. In our tests, it reduces -
OPTIMIZATION Quantization Pruning 70B model size 132GB to 20GB, with WikiTexts PPL 3.59 to 7.19. = Key Takeaways: R
g " ; oo o i S General-task accuracy drop remains under 20%. o 1) Seamless integration outweighs e
- Supports sparse caching, using only « Converts weights/activations to E - N . 03 .
the most relevant KV pairs during low-precision (e.g., FP16 — INT4) importance weights. « OmniQuant Introduces loss-aware weight clipping to selectively @ standalone performance. 0
decoding to reduce compute. post-training. - Enables sparse computation for constrain critical weights, enhancing quantization robustness. 2) Cross-technique compatibility enables .
+ Enables KV quantization to - Improves inference speed and faster and lighter inference. acdiege acen [st unified pipelines.
compress memory footprint. reduces memory/bandwidth usage. = Can be structured (e.g,, channel or * AWQ / GPTQ Widely adopted for inference due to ease of Fig.2 - - 3) Practical methods outperform complex
« Save memory usage and improve « Preserves accuracy using block pruning) or unstructured, integration and strong compatibility with LLaMA-3 models. e i o] | Grgnay smonerro " ginrtae TMaa
inference throughput, especially for calibration data. with trade-offs between accuracy N N o alternatives.
long-context autoregressive tasks. and hardware compatibility. Weight Pruning / Sparsification: - Up to 75% Size Reduction with AWQ + ShortGPT-10
* Wanda Prunes low-importance weights per neuron using -
activation scores, supporting N:M sparsity for acceleration. e ModelSiee iobptt DRt Ceptest Acciiacy
PPL(8B, 50% sparsity):8.28 to 11.97. Throughput: 35 tokens/s. 04 75% 1 98.02 tok/s 10K+ Preserved
oo 2 3; ~10x token i s
« SliceGPT Uses singular value pruning to remove weight matrix o 2268 = 3368 R token input penchmark scores
rows/columns, boosting efficiency but adding structural o
. . . wcchalenge arcessy winogrande gpaa dismond
RESEARCH complexity that hinders integration. PPL (8B, 50% sparsity): 8.28
N — N ———A— t0 99.76. Throughput(4000 in, 256 out): 9.49 to 29.18 tokens/s. .
o 1g.3 RulKV vs PyramidkV Thoughput okens /)
« ShortGPT Prunes less critical attention blocks with controllable P
accuracy trade-offs, validated through empirical analysis. Our o « Investigate performance with ultra-long contexts (>50k tokens)
echaichal Compresslon LongSeq System Eetformance accuracy tra valiaated U8 pirical analysis. Ou » « Compress Larger Models (405B) & Other model architectures (e.g.MOE)
Research Implementation Inference Integration Validation evaluation results shown in Fig 2.

« Extend optimizations to consumer GPUs (NVIDIA RTX 4090 24GB)
« Integrate KV cache optimization methods into famous inference engines, e.g. SGLang/Dynamo
« Explore INT1/INT2 quantization with minimal accuracy loss

and Evaluation and Testing Optimization Optimazation and Report s

KV Cache Optimization:
« PyramidKV: Reduces memory via layer-wise shrinking of KV
January February March April May June cache, preserving accuracy by retaining key cache information. « Integrate structured sparsity like Wanda on quantized model to further improve throughput
* KIVI / KVQuant: Compress KV cache to reduce memory with « Develop methods to increase accuracy recovery for heavily pruned models (20+ layers)
minimal impact on performance. Our results shown in Fig 3. « Explore combined optimization techniques to maintain quality while improving speed

