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« Sensor packages detach from ASTROJACK and deployed across a
designated lunar-area, providing direct ground-level measurements.

tagging.
« 2D or 3D spatial telemetry rendered on an interactive map interface for
- | remote monitoring and analysis of sensor package locations.
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Objective: Provide a proof-of-concept for low-cost, lightweight
distributed sensor packages capable of:
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« Ground Analysis: classifying ground hardness. 31500 31550 31600 31650 | | | ' | | |
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« Communication: maintaining robust, drop-node-tolerant Machine L : Time Stamp (ms) e St
ime Stamp (ms . .
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« Localization: computing relative node locations. *Deploved SEnsors SNSOIFIOW-based il Neural NEWWOTH SETVEs ds e base MOodel, Jvnlie typitally power-Itensive, 1t » Initial drop tests were conducted
Doy optimized into a low-power TinyML format suitable for deployment on resource-constrained platforms like

highlighted in purple. by mounting fragile electronics

inside a suspended milk crate.
« An accelerometer is secured to
the base to capture impact data.

the Raspberry Pi.

Key Milestones

« Implement ground-hardness classification via accelerometer data and
onboard software.

« Develop peer-to-peer communication protocol over SDRs.

« Build RSSI-based distance estimation between two nodes.

« Extend localization and communication to a network of 3+ nodes.

« Design and fabricate enclosure to house and protect system electronic st 6 fhaeh 071 e e @ @ S 61 ek 077 [ Wi ~ T Final encasing:

Comms & Localization Testing:

« Compact, self-contained telemetry units were
assembled by integrating a battery, Raspberry Pi,
and SDR into a single package connected through
custom wire harnesses.

Wireless Communication is implemented through a peer-to-peer, multi-nodal mesh network. Each node:

« Sends and receives 25-packet bursts containing local ground classification (soft_or_hard).

« Stores soft_or_hard majority bit from all peers.

« Stores and sends distance estimations of all peers through packet-extracted, averaged RSSI values (rssi_log).
« Stores rssi_logs from peers (rssi_peer_log) to form distance matrix used for localization.

components from dropping.
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« Determine relative location of each node using RSSI-based distance % J2: soft/hard (0/1 bit) from J2, | % J1: soft/hard (0/1 bit) from J1, |
estimation and localization within 50m of uncertainty per 100m. { S5 04, j401, )50 ] {_J501,J4:0/1, )5 011 ] Packet transfer of the full network. We aimed to design a lightweight, low-cost system that could autonomously
characterize lunar soil and support future NASA missions with real-time, ground-
truth data.

« Ground analysis: Captured impact characteristics and implemented surface

, classification using onboard ML.
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« Uses the calculated distance to output (X,y,z) coordinate points.

*In the event that the central node goes offline, the next available ARM will take it's place
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