
NEXT GENERATION ASSET TRACKING SYSTEM

STUDENTS: Kasen Cyr, Nikhil Devisetty, Clare Fesalbon, Wellington Miao, Daniel Nordgren, Shunzheng Wang

ADVISORS: JIM RITCEY, TOKUNBO OLUKOYA, WARD YOHE

SPONSOR: UW MEDICAL CENTER

UW Medical Center manages over 10,000 pieces of equipment with roughly 8,000

devices that move around the facility. UWMC needs to be able to track and locate

these medical devices for maintenance and inventory purposes.

Requirements:

Objective & Requirements

Create a new tracking device to be attached onto medical equipment with
the following functionality:

• Blinking LED (battery indicator, preventative maintenance recall)

• Wi-Fi agnostic (previous system was BLE reliant)

• Power-efficient (> 1 year battery)

As well as develop:

• Firmware to handle Wi-Fi transmission, battery monitoring, deep sleep
management, location sensing data, and command processing

• Local server and database to handle asset tracker information and
communication

• User-end webpage to view and recall trackers

Hardware Goals:

• Compact packaging of all circuit

components

• Enable LED blinking even when ESP32-C6

is powered off

• Battery life of 18 months

Technical Design - Hardware

Hardware

• PCB:
o Implemented status LED that works independently of SoC power using

custom latch circuit
o Chose smaller components to save space

• Enclosure:
o 3-D printed, 3” x 2” x 1”
o Corrosion-resistant to common hospital cleanersCircuit Elements:

• ESP32

• LDO Regulator

• Latching Circuit

• Blinking Circuit

Software

• Server
o Successfully calculates tracker

location within 10 ft
o Able to accurately process and

store data for multiple trackers

• System Stack: Built with MongoDB, MQTT, Flask &
React

• Data Flow: MQTT payloads from trackers are parsed
and stored as JSON in MongoDB

Technical Design - Software

Requests via API
Server

MongoDB

Flask Server

MQTT Broker
Response via API

Comms via MQTT

Comms via MQTT

Future Work

Firmware role:
Bridges hardware and server via
the ESP32-C6

MQTT Communication topics:
1) Location:

o Sends 3 strongest APs
o Includes altitude and

battery level (in mV)
2) Recall

o Server instructs device to
turn recall LED on/off

3) Sleep
o Server sets deep sleep

duration

Power Management:
Uses deep sleep cycles to
conserve battery between Wi-Fi
connections

Flowchart of this cycle with
communications can be seen in
Figure 1

Technical Design - Firmware

Power Optimization:
• Try lower-power microcontrollers
• Test different batteries and measure lifespan
• Simplify LED blink circuit
• Send location updates only when moved
• Scan fewer access points to reduce load

Security & Usability
• Add encryption and authentication
• Allow manual entry of AP MACs and coordinates

in the web interface

Firmware

• Power Efficiency:
o Successfully utilizes deep sleep

mode to reduce Wi-Fi use
o See Figure 7 for differences in

power saving

• Altitude Sensing:
o Achieved altitude computation

with ~20cm accuracy

• Battery Monitoring
o Sends low-battery alert to server

Results

Figure 5. PCB design

Figure 3. Schematic of the LED circuit Figure 4. Simulation result of the LED circuit

Figure 6. Transparent view of the case

Figure 1. Firmware workflow chart

Circuit Design:

• Latching Circuit: Turns on/off based on ESP32-

C6 signals and stays on until toggled

• Blinking Circuit: Uses BJTs and capacitors to

blink LED when latched on

• Backend: Flask API provides data access and
updates.

• Frontend: React displays real-time map and
table for monitoring and control.

Figure 2. Battery life calculator

Figure 7.Power usage during Wi-Fi scan, light/deep
sleep, under different voltages and LED states

Webpage

React

User Interaction

Tracker

MQTT Protocol

Byte Array Format

• Webpage
o LED recall trigger
o Map of access points and trackers
o Adjustable sleep timers
o Filter specific trackers

	Slide 1

