Skip to main content

The Science of Information: From Pushing Bits Over the Air to Assembling World’s Largest Jigsaw Puzzles

David Tse


Information theory is the science behind the engineering of all modern day communication systems. Before information theory, the design of communication systems was ad hoc and tied to the specific source and specific physical medium of communication. By focusing instead on an abstract but quantifiable notion of information, information theory provides a unified basis for the design of all communication systems, identifies fundamental tradeoffs and introduces new ways of communicating that upends decades of engineering intuition. Although originally invented in the context of communication, this way of thinking can be broadened to other fields as well. In this talk, we give success stories of applying the theory in two fields: wireless communication and computational biology. In the field of wireless communication, information theory has played a key role in the orders-of-magnitude of increase in the efficiency of spectrum utilization. In biology and medicine, high-throughput sequencing has revolutionized how science is done in the past decade. High throughput sequencing generates hundreds of millions of short fragments called reads and a key computational problem is the assembly of these reads to reconstruct the underlying DNA or RNA sequence. We describe an information theoretic framework for this problem and how it led to the design of an RNA assembler, which is significantly more accurate than prior art. In these stories, a curious theme recurs: solutions that are information theoretically optimal can often be achieved computational efficiently as well.


David Tse, professor of electrical engineering at Stanford University, received his B.A.Sc in systems design engineering from the University of Waterloo and his M.S. and Ph.D in electrical engineering from MIT. He is coauthor, with Pramod Viswanath, of the text “Fundamentals of Wireless Communication.” Tse is also the inventor of the proportional-fair scheduling algorithm used in all third and fourth-generation cellular systems. He was a postdoctoral member of technical staff at A.T. & T. Bell Laboratories 1994-1995 and was on the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley 1995-2014. He has received an NSERC graduate fellowship from the government of Canada, an NSF CAREER award, the Erlang Prize, numerous best paper awards and several teaching awards. His research interests are in information theory and its applications in various fields, including wireless communication, energy and computational biology.

David Tse Headshot
David Tse
Stanford University
Microsoft Atrium, Paul G. Allen Center
2 Nov 2015, 3:30pm until 4:30pm