Biosystems research in UW’s Department of Electrical & Computer Engineering is a highly collaborative endeavor. Our faculty focus on four areas of Biosystems research: synthetic & systems biology, neural engineering, biomedical devices, and mobile health. Many of our faculty hold secondary appointments and work closely with collaborators from other departments including Bioengineering, Computer Science and Engineering, Biology, Genome Sciences, Applied Mathematics, and the UW Medical Center. Our Biosystems faculty work with many cross-disciplinary institutes such as the eScience Institute, the NSF Engineering Research Center for Sensorimotor Neural Engineering, the Institute for Protein Design, the Bloedel Hearing Research Center and the University of Washington Institute for Neuroengineering.
Topics
Synthetic Biology
Biotechnology, macromolecular engineering tools, advanced materials, genetic engineering, computer aided design, laboratory automation, DNA/RNA sequence assembly, information theory and machine learning for genomics applications.
Design of biomedical devices including research and clinical neural interfaces, diagnostic devices, wearable sensors, and embedded processing and wireless communication links for biomedical devices.
Development of new health monitoring, diagnostics, and health management applications and tools using emerging mobile devices and sensors. Research in this area applies advances in imaging, app development, physiological modeling, statistical algorithms, and machine learning. This work has implications for home health monitoring and low-resource environments.
UW ECE associate professor Chet Moritz and senior postdoctoral researcher Dr. Fatma Inanici have developed a new way to non-invasively, electrically stimulate spinal cord nerves in people with cervical spinal cord injury, resulting in dramatic functional gains.
Iyer's impressive work in radio device miniaturization and insect tagging was recently highlighted by the American Association for the Advancement of Science (AAAS).
A UW ECE research team has designed a new chip for neural interfaces that will help increase knowledge about the brain and enable better treatments for a wide range of medical conditions such as Parkinson’s disease and epilepsy.
This prestigious award from The Marconi Society acknowledges Iyer's innovative work developing bio-inspired and bio-integrative wireless sensor systems.
Despite ongoing pressures from the novel coronavirus pandemic, students in the Neural Engineering Tech Studio designed and engineered devices to assist people with conditions such as paralysis, autism, blindness and Parkinson’s disease.
UW ECE faculty and students are leading collaborative research aimed at reducing impacts of the novel coronavirus (COVID-19). Projects range from assisting with diagnostics, testing and tracking, to engineering ventilator technology, to developing targeted treatments for the disease.