Skip to main content
  COVID-19 Information and Resources for ECE Students, Faculty, and Staff


The Professional Master’s Program (PMP) is flexible enough to accommodate either part-time and full-time study. Students generally take one or two evening classes per quarter as well as a quarterly seminar. Summer quarter is optional and provides an opportunity for students to accelerate through the program.  Course offerings for the current academic year are below.  You may also wish to peruse the archive of past years’ offerings.

2020-2021 Course Offerings

Autumn 2020

  • Computer Vision: Classical and Deep Methods (Birchfield)
  • Deep Learning for Big Visual Data (Hwang)
  • Machines and Drives (Nagel)
  • Analytical Methods in Electrical Engineering (Bonaci)
  • Analog Circuits for Sensor Systems I (Silver)
  • Radar and Imaging Techniques (Kuga)
  • COVID Tech (Mamishev)
  • The Self-Driving Car: Intro to AI for Mobile Robots (Smith)

Winter 2021

  • Applied High-Performance GPU Computing (Reinhardt)
  • Analog Integrated Circuit Design I (Silver)
  • Embedded and Real-Time Systems (Sloss)
  • Microwave Engineering (Kuga)
  • Machine Learning for Cybersecurity (Poovendran)
  • Convex Optimization (Calderone)
  • Advanced Introduction to Machine Learning (Bilmes)
  • Modeling of MEMS (Mamishev)

Spring 2021

  • Software Engineering for Embedded Applications (Bonaci)
  • Deep Learning (Bilmes)
  • Digital Image Processing (Sun)
  • Microfabrication (Li)
  • Quantum Mechanics and Quantum Computing Basics for Engineers (Anantram)
  • Model-based Representations for Systems Engineering (Kimberly)
  • Analog Circuits for Sensor Systems II (Silver)
  • Antennas for Modern Wireless Devices (Kuga)

Summer 2021

  • Analog Integrated Circuit Design II (Silver)
  • Mobile Applications for Sensing and Control (Bonaci)
  • Engineering Project Management (Mamishev)


2019–2020  Course Offerings

Autumn 2019

  • The Self Driving Car: Introduction to AI for Mobile Robots
  • Analytical Methods for Electrical Engineering (Klavins)
  • Machine Vision (Shapiro)
  • Linear Systems Theory (Bushnell)
  • Dynamics of Controlled Systems (Nagel)
  • Design of Digital and Analog Electronic Circuits (Silver)
  • Radar and Imaging Techniques (Kuga)

Winter 2020

  • Embedded and Real Time Systems (Sloss)
  • Intro to Machine Learning (Bilmes)
  • Software Engineering for Embedded Applications (Klavins)
  • Applied Electromagnetics: How the Force of Maxwell’s Equations Drives Circuit Theory and the Rest of Life  (Goldstein)
  • GPU-Accelerated Interactive Scientific Visualization Techniques (Reinhardt)
  • Machine Learning for Cyber Security (Poovendran and Mohammad)
  • Microwave Engineering (Kuga)

Spring 2020

  • Antennas for Modern Wireless Devices (Kuga)
  • Digital Signal Processing (Atlas)
  • Mobile Applications for Sensing and Control (Arjona) – video description here
  • Digital Video Coding Systems  (Sun)
  • Analog Circuits for Sensor Systems (Silver)
  • Fundamentals of Wireless Communications  (Ritcey)
  • Introduction to Security Engineering (Bonaci)

Watch: Mobile Applications for Sensing and Control (Arjona)


Summer 2020

  • Engineering Project Management (Mamishev)


Upcoming Courses

Our PMP courses are at the cutting-edge, positioning graduates for top careers in a variety of areas, including AI, machine learning and security, to name a few.  In upcoming academic years we’ll be adding the following courses so that students remain at the forefront of electrical engineering expertise.

Machine Learning and Cyber Security

Detecting and preventing cyber-attacks has become critically important as we live in a perpetually connected world. This course will teach the basics of Machine Learning in Cybersecurity using Python and its libraries (Numpy, Scikit-learn). Machine learning algorithms such as clustering, k-means, and Naive Bayes will be covered. The course will also provide an understanding of how to combat malware, and detect spam; and implement real-world cyber examples using machine learning.

Data Science for Power Systems

Covers data science applications for power systems operations and control. Focuses on the management and analytics of multi-domain multi-resolution data (PMUs, SCADA, weather, renewables, customer load), especially on understanding how to integrate advanced data science tools with legacy physical infrastructures.

The Self-Driving Car – Introduction to AI for Mobile Robots

Provides an introduction to control, perception, and state estimation for mobile robots. Reviews the implementation of algorithms that allow robots to autonomously navigate through their environment. Applies concepts learned in lecture to a mini race car platform in order to develop a self-driving vehicle.

Machine Learning for Big Visual Data

Introduces useful features and distance measures associated with big visual data. Covers unsupervised learning and supervised machine learning, neural network and deep learning, as well as the reinforcement learning approaches. Addresses hidden Markov model to address temporal visual data. Explores machine learning techniques with applications to image object detection and recognition, as well as application to video object segmentation and tracking.

Wireless Networking for 5G

Interweaves core network design with its implementation on the most popular open source network simulator ns-3 ( hosted at the University of Washington. Reviews basic network operation and optimization for the 2 key wireless standard families: 802.11 WLANs and LTE/LTE-Advanced/LTE-Advanced+ via a set of structured experiments using ns-3. Students will conduct a 5G oriented project involving a emerging 5G design scenario (Internet of Things, Heterogeneous Networking, Vehicular Networks, Mobile Edge Cloud etc.) to be evaluated via ns-3.

Applied Electromagnetics: How the Electromagnetic Force of Maxwell’s Equations Implies Inductance, Capacitance, Classical Circuit Theory, and the Rest of Life

Four tiny equations, written in vector calculus, describe the fundamental force that drives charge through all electronic systems—and also, incidentally, drives virtually every phenomenon we encounter in life. This is a course about the nature of that force; about how it shapes our world; and about the deep, yet rarely told story of how Maxwell’s Equations imply that circuit theory is false, yet is in certain regimes an excellent approximation.

Applied High-Performance GPU Computing 

Reviews the efficient formulation of complex math/scientific/engineering problems using the parallel language(s)/API(s) of GPU compute code and their performance analysis. Covers design considerations including basic GPU kernel design, memory and cache optimization and analysis, work efficiency, and floating-point considerations. Includes applied topics such as hands-on kernel debugging, timing and profiling, and error handling techniques.